精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=$\left\{\begin{array}{l}3x-1,x<1\\{2}^{x},x≥1\end{array}\right.$,则满足f(f(a))=2f(a)的a取值范围是(  )
A.[$\frac{2}{3}$,+∞)B.[$\frac{2}{3}$,1]C.[1,+∞)D.[0,1]

分析 令f(a)=t,则f(t)=2t,讨论t<1,运用导数判断单调性,进而得到方程无解,讨论t≥1时,以及a<1,a≥1,由分段函数的解析式,解不等式即可得到所求范围.

解答 解:令f(a)=t,
则f(t)=2t
当t<1时,3t-1=2t
由g(t)=3t-1-2t的导数为g′(t)=3-2tln2,
在t<1时,g′(t)>0,g(t)在(-∞,1)递增,
即有g(t)<g(1)=0,
则方程3t-1=2t无解;
当t≥1时,2t=2t成立,
由f(a)≥1,即3a-1≥1,解得a≥$\frac{2}{3}$,且a<1;
或a≥1,2a≥1解得a≥0,即为a≥1.
综上可得a的范围是a≥$\frac{2}{3}$.
故选:A

点评 本题考查分段函数的运用,主要考查函数的单调性的运用,运用分类讨论的思想方法是解题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)={e^x},g(x)=\frac{a}{x}$,a为实常数.
(1)设F(x)=f(x)-g(x),当a>0时,求函数F(x)的单调区间;
(2)当a=-e时,直线x=m、x=n(m>0,n>0)与函数f(x)、g(x)的图象一共有四个不同的交点,且以此四点为顶点的四边形恰为平行四边形.
求证:(m-1)(n-1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在锐角三角形ABC 中,角 A,B,C 的对边分别为 a,b,c.若a=2bsinC,则tanA+tanB+tanC的最小值是(  )
A.4B.$3\sqrt{3}$C.8D.$6\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(x)=$\frac{(4x+a)lnx}{3x+1}$,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)若对于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的取值范围;
(Ⅲ)求证:ln(4n+1)≤16$\sum_{i=1}^{n}$$\frac{i}{(4i+1)(4i-3)}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y-1≤0}\\{x+y≥0}\\{x+2y-4≥0}\end{array}\right.$,则z=x-2y的最大值为(  )
A.-12B.-1C.0D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=f(x)满足对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2016)+f(2017)+f(2018)的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知当x<1时,f(x)=(2-a)x+1;当x≥1时,f(x)=ax(a>0且a≠1).若对任意x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$成立,则a的取值范围是(  )
A.(1,2)B.$(1,\frac{3}{2}]$C.$[\frac{3}{2},2)$D.(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,集合$A=\left\{{x|{2^x}>\frac{1}{2}}\right\},B=\left\{{x|{{log}_3}x<1}\right\}$,则A∩(∁UB)=(  )
A.(-1,+∞)B.[3,+∞)C.(-1,0)∪(3,+∞)D.(-1,0]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从六个数1,3,4,6,7,9中任取2个数,则这两个数的平均数恰好是5的概率为(  )
A.$\frac{1}{20}$B.$\frac{1}{15}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案