| A. | (1,2) | B. | $(1,\frac{3}{2}]$ | C. | $[\frac{3}{2},2)$ | D. | (0,1)∪(2,+∞) |
分析 由题意可得f(x)在R上单调递增,分别运用一次函数和指数函数的单调性,以及单调性的定义,得到a的不等式,求交集,即可得到所求范围.
解答 解:对任意x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$成立,
即为f(x)在R上单调递增,
由当x<1时,f(x)=(2-a)x+1,可得2-a>0,
解得a<2;①
又当x≥1时,f(x)=ax(a>0且a≠1),
可得a>1;②
又f(x)在R上单调递增,可得
2-a+1≤a,解得a≥$\frac{3}{2}$③
由①②③可得$\frac{3}{2}$≤a<2,
故选:C.
点评 本题考查函数的单调性的判断,注意运用一次函数和指数函数的单调性,以及单调性的定义,考查运算能力,属于中档题和易错题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{2}{3}$,+∞) | B. | [$\frac{2}{3}$,1] | C. | [1,+∞) | D. | [0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com