精英家教网 > 高中数学 > 题目详情
6.在△ABC中,若$\overrightarrow{BC}$•$\overrightarrow{BA}$+2$\overrightarrow{AC}$•$\overrightarrow{AB}$=$\overrightarrow{CA}$•$\overrightarrow{CB}$,则$\frac{sinA}{sinC}$的值为$\sqrt{2}$.

分析 根据题意,利用平面向量的数量积,结合余弦定理和正弦定理,即可求出$\frac{sinA}{sinC}$的值.

解答 解:在△ABC中,设三条边分别为a、b,c,三角分别为A、B、C,
由$\overrightarrow{BC}$•$\overrightarrow{BA}$+2$\overrightarrow{AC}$•$\overrightarrow{AB}$=$\overrightarrow{CA}$•$\overrightarrow{CB}$,
得ac•cosB+2bc•cosA=ba•cosC,
由余弦定理得:
$\frac{1}{2}$(a2+c2-b2)+(b2+c2-a2)=$\frac{1}{2}$(b2+a2-c2),
化简得$\frac{{a}^{2}}{{c}^{2}}$=2,
∴$\frac{a}{c}$=$\sqrt{2}$,
由正弦定理得$\frac{sinA}{sinC}$=$\frac{a}{c}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了平面向量的数量积以及余弦定理和正弦定理的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.直线m经过抛物线C:y2=4x的焦点F,与C交于A,B两点,且|AF|+|BF|=10,则线段AB的中点D到y轴的距离为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设全集U={-2,-1,0,1,2},A={x|x≤1},B={-2,0,2},则∁U(A∩B)=(  )
A.{-2,0}B.{-2,0,2}C.{-1,1,2}D.{-1,0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y-1≤0}\\{x+y≥0}\\{x+2y-4≥0}\end{array}\right.$,则z=x-2y的最大值为(  )
A.-12B.-1C.0D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.用一块矩形铁皮作圆台形铁桶的侧面,要求铁桶的上底半径是24cm,下底半径是16cm,母线长为48cm,则矩形铁皮长边的最小值是144cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知当x<1时,f(x)=(2-a)x+1;当x≥1时,f(x)=ax(a>0且a≠1).若对任意x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$成立,则a的取值范围是(  )
A.(1,2)B.$(1,\frac{3}{2}]$C.$[\frac{3}{2},2)$D.(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设p:x2+y2≤r2(x、y∈R,r>0);q:$\left\{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{x-y≤0}\end{array}\right.$(x、y∈R),若q表示的集合是p表示的集合的子集,则r的取值范围为[$\sqrt{10},+∞$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中真命题是(  )
A.$?x∈({-∞,\frac{π}{4}}),tanx≤1$
B.设l,m表示不同的直线,α表示平面,若m∥l且m⊥α,则l∥α
C.利用计算机产生0和l之间的均匀随机数m,则事件“3m-1≥0”发生的概率为$\frac{1}{3}$
D.“a>0,b>0”是“$\frac{b}{a}+\frac{a}{b}$≥2”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,输出的S值为(  )
A.3025B.-3024C.-3025D.-6050

查看答案和解析>>

同步练习册答案