精英家教网 > 高中数学 > 题目详情
1.用一块矩形铁皮作圆台形铁桶的侧面,要求铁桶的上底半径是24cm,下底半径是16cm,母线长为48cm,则矩形铁皮长边的最小值是144cm.

分析 设圆台的侧面展开图的圆心角∠AOA′=α,OA=x,由三角形相似求出x=96 cm.推导出△BOB′为正三角形,由此能示出矩形铁皮长边的最小值.

解答 解:如图,设圆台的侧面展开图的圆心角∠AOA′=α,OA=x,
由三角形相似可得$\frac{x}{x+48}=\frac{16}{24}$,
解得x=96 cm.  
则$\frac{2π•24}{2π•(96+48)}$=$\frac{α}{360°}$,
解得α=60°,
所以△BOB′为正三角形,
则BB′=OB=96+48=144 cm.
由下图可知,矩形铁皮长边的最小值为144 cm.
故答案为:144cm.

点评 本题考查矩形铁皮长边的最小值的求法,是中档题,解题时要要认真审题,注意圆台的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在Rt△ABC中,∠B=60°过直角顶点A在∠BAC内随机作射线AD,交斜边BC于点D,则BD>BA的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$f(x)=sin({\frac{π}{2}+2x})-5sinx$的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|2x-a|+|2x+3|,g(x)=|2x-3|+2.
(Ⅰ)解不等式|g(x)|<5;
(Ⅱ)若对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.实数x,y满足$\left\{\begin{array}{l}{y-2x≤-2}\\{y≥1}\\{x+y≤4}\end{array}\right.$,则$\frac{y}{x}$的取值范围是$[\frac{1}{3},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,若$\overrightarrow{BC}$•$\overrightarrow{BA}$+2$\overrightarrow{AC}$•$\overrightarrow{AB}$=$\overrightarrow{CA}$•$\overrightarrow{CB}$,则$\frac{sinA}{sinC}$的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow a=(λ,1)$,$\overrightarrow b=(λ+2,1)$,若$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$,则实数λ的值为(  )
A.-1B.2C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数$\frac{3+i}{1-i}$(i为虚数单位)的虚部为(  )
A.2iB.2C.-2iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.《九章算术•均输》中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5 钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,乙所得为(  )
A.$\frac{4}{3}$钱B.$\frac{7}{6}$钱C.$\frac{6}{5}$钱D.$\frac{5}{4}$钱

查看答案和解析>>

同步练习册答案