精英家教网 > 高中数学 > 题目详情
14.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y-1≤0}\\{x+y≥0}\\{x+2y-4≥0}\end{array}\right.$,则z=x-2y的最大值为(  )
A.-12B.-1C.0D.$\frac{3}{2}$

分析 先画出满足约束条件的可行域,并求出各角点的坐标,然后代入目标函数,即可求出目标函数z=x-2y的最大值.

解答 解:满足约束条件$\left\{\begin{array}{l}{x-y-1≤0}\\{x+y≥0}\\{x+2y-4≥0}\end{array}\right.$的可行域如下图所示:
由图可知,由$\left\{\begin{array}{l}{x-y-1=0}\\{x+y=0}\end{array}\right.$可得C($\frac{1}{2}$,-$\frac{1}{2}$),
由:$\left\{\begin{array}{l}{x+y=0}\\{x+2y-4=0}\end{array}\right.$,可得A(-4,4),
由$\left\{\begin{array}{l}{x-y-1=0}\\{x+2y-4=0}\end{array}\right.$可得B(2,1),
当x=2,y=1时,z=x-2y取最大值:0.
故选:C.

点评 本题考查的知识点是简单的线性规划,其中根据约束条件画出可行域,进而求出角点坐标,利用“角点法”解题是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.矩形ABCD中,AB=3,AD=2,P矩形内部一点,且AP=1,若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,则3x+2y的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f ( x)=2ax-a+3,若?x0∈(-1,1),f ( x0 )=0,则实数 a 的取值范围是(  )
A.(-∞,-3)∪(1,+∞)B.(-∞,-3)C.(-3,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α为第四象限角,$sinα+cosα=\frac{1}{5}$,则$tan\frac{α}{2}$的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|2x-a|+|2x+3|,g(x)=|2x-3|+2.
(Ⅰ)解不等式|g(x)|<5;
(Ⅱ)若对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=$\left\{\begin{array}{l}3x-1,x<1\\{2}^{x},x≥1\end{array}\right.$,则满足f(f(a))=2f(a)的a取值范围是(  )
A.[$\frac{2}{3}$,+∞)B.[$\frac{2}{3}$,1]C.[1,+∞)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,若$\overrightarrow{BC}$•$\overrightarrow{BA}$+2$\overrightarrow{AC}$•$\overrightarrow{AB}$=$\overrightarrow{CA}$•$\overrightarrow{CB}$,则$\frac{sinA}{sinC}$的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.圆x2+y2=2的圆心到直线$y=x+\sqrt{2}$的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,∠ACB=120°,D是 AB 上一点,满足∠ADC=60°,CD=2,若CB$≥\sqrt{6}$,则∠ACD的最大值为105°

查看答案和解析>>

同步练习册答案