精英家教网 > 高中数学 > 题目详情
17.已知集合 A={x|x2-x-2>0},B={x|1≤x≤3},则图中阴影部分所表示的集合为(  )
A.[1,2)B.(1,3]C.[1,2]D.(2,3]

分析 阴影部分表示的集合为B∩∁UA,根据集合关系即可得到结论.

解答 解:阴影部分表示的集合为B∩∁UA,
∵A={x|x2-x-2>0}=(-∞,-1)∪(2,+∞),
∴∁UA=[-1,2],
∵B={x|1≤x≤3}=[1,3],
∴B∩∁UA=[1,2]
故选:C

点评 本题主要考查集合的基本运算,根据图象确定集合关系是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设f(x)=$\frac{(4x+a)lnx}{3x+1}$,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)若对于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的取值范围;
(Ⅲ)求证:ln(4n+1)≤16$\sum_{i=1}^{n}$$\frac{i}{(4i+1)(4i-3)}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集U=R,集合$A=\left\{{x|{2^x}>\frac{1}{2}}\right\},B=\left\{{x|{{log}_3}x<1}\right\}$,则A∩(∁UB)=(  )
A.(-1,+∞)B.[3,+∞)C.(-1,0)∪(3,+∞)D.(-1,0]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.i为虚数单位,复数$\frac{3+i}{1-i}$的虚部是(  )
A.2iB.2C.-2iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数学与自然、生活相伴相随,无论是蜂的繁殖规律,树的分枝,还是钢琴音阶的排列,当中都蕴含了一个美丽的数学模型Fibonacci(斐波那契数列):1,1,2,3,5,8,13,21…,这个数列前两项都是1,从第三项起,每一项都等于前面两项之和,请你结合斐波那契数列,尝试解答下面的问题:小明走楼梯,该楼梯一共8级台阶,小明每步可以上一级或二级,请问小明的不同走法种数是(  )
A.20B.34C.42D.55

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于实数m>-3,若函数$y={(\frac{1}{2})^x}$图象上存在点(x,y)满足约束条件$\left\{\begin{array}{l}x-y+3≥0\\ x+2y+3≥0\\ x≤m\end{array}\right.$,则实数m 的最小值为(  )
A.$\frac{1}{2}$B.-1C.-$\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从六个数1,3,4,6,7,9中任取2个数,则这两个数的平均数恰好是5的概率为(  )
A.$\frac{1}{20}$B.$\frac{1}{15}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某人打算制定一个长期储蓄计划,每年年初存款2万元,连续储蓄12年.由于资金原因,从第7年年初开始,变更为每年年初存款1万元.若存款利率为每年2%,且上一年年末的本息和共同作为下一年年初的本金,则第13年年初时的本息和约为(  )万元(结果精确到0.1).(参考数据:1.026≈1.13,1.0212≈1.27)
A.20.09万元B.20.50万元C.20.91万元D.21.33万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.《九章算术》中“竹九节”问题:现有一根9节的竹子,自上而下各节的容积称等比数列,上面3节的容积共2升,下面3节的容积共128升,则第5节的容积为(  )
A.3升B.$\frac{31}{6}$升C.4升D.$\frac{32}{7}$

查看答案和解析>>

同步练习册答案