精英家教网 > 高中数学 > 题目详情
12.数学与自然、生活相伴相随,无论是蜂的繁殖规律,树的分枝,还是钢琴音阶的排列,当中都蕴含了一个美丽的数学模型Fibonacci(斐波那契数列):1,1,2,3,5,8,13,21…,这个数列前两项都是1,从第三项起,每一项都等于前面两项之和,请你结合斐波那契数列,尝试解答下面的问题:小明走楼梯,该楼梯一共8级台阶,小明每步可以上一级或二级,请问小明的不同走法种数是(  )
A.20B.34C.42D.55

分析 从第1级开始递推,脚落到第1级只有从地上1种走法;第二级有两种可能,从地跨过第一级或从第一级直接迈上去;登上第3级,分两类,要么从第1级迈上来,要么从第2级迈上来,所以方法数是前两级的方法和;依此类推,以后的每一级的方法数都是前两级方法的和;直到8级,每一级的方法数都求出,因此得解.

解答 解:递推:
登上第1级:1种
登上第2级:2种
登上第3级:1+2=3种(前一步要么从第1级迈上来,要么从第2级迈上来)
登上第4级:2+3=5种(前一步要么从第2级迈上来,要么从第3级迈上来)
登上第5级:3+5=8种
登上第6级:5+8=13种
登上第7级:8+13=21种
登上第8级:13+21=34种,
故选B.

点评 本题考查了裴波那切数列的灵活应用,关键是先找到规律,然后递推出大数的情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知α为第四象限角,$sinα+cosα=\frac{1}{5}$,则$tan\frac{α}{2}$的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.圆x2+y2=2的圆心到直线$y=x+\sqrt{2}$的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$\begin{array}{l}f(x)=\left\{\begin{array}{l}{e^x}-1,({x<1})\\{x^3}-9{x^2}+24x-16,({x≥1})\end{array}\right.\end{array}$,则关于x的方程|f(x)|=a(a为实数)根个数不可能为(  )
A.1B.3C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}的前n项的和为Sn,且a3与a2015是方程x2-10x+16=0的两根,则$\frac{{S}_{2017}}{2017}$+a1009=(  )
A.10B.15C.20D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合 A={x|x2-x-2>0},B={x|1≤x≤3},则图中阴影部分所表示的集合为(  )
A.[1,2)B.(1,3]C.[1,2]D.(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,∠ACB=120°,D是 AB 上一点,满足∠ADC=60°,CD=2,若CB$≥\sqrt{6}$,则∠ACD的最大值为105°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=2ax-\frac{1}{x}-({a+2})lnx({a≥0})$.
(Ⅰ)当a=0时,求函数f(x)的极值;
(Ⅱ)当a>0时,讨论函数f(x)的单调性;
(Ⅲ)当a=1时,若对于任意的x1,x2∈[1,4],都有$|{f({x_1})-f({x_2})}|<\frac{27}{4}-2mln2$成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知公比不为1的等比数列{an}的前5项积为243,且2a3为3a2和a4的等差中项.
(1)求数列{an}的通项公式an
(2)若数列{bn}满足bn=bn-1•log3an+2(n≥2且n∈N*),且b1=1,求数列$\left\{{\frac{(n-1)!}{{{b_{n+1}}}}}\right\}$的前n项和Sn

查看答案和解析>>

同步练习册答案