精英家教网 > 高中数学 > 题目详情
18.已知椭圆的焦点F1、F2在x轴上,P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|,又该椭圆经过点A(1,-$\frac{3}{2}$).
(1)求此椭圆的方程;
(2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.

分析 (1)由题意可设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由2|F1F2|=|PF1|+|PF2|,该椭圆经过点A(1,-$\frac{3}{2}$).可得:4c=2a,$\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}$=1,a2=b2+c2,联立解出即可得出.
(2)由∠F2F1P=120°,可得直线PF1的方程为:y=-$\sqrt{3}$(x+1),与椭圆方程联立解出即可得出.

解答 解:(1)由题意可设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由2|F1F2|=|PF1|+|PF2|,该椭圆经过点A(1,-$\frac{3}{2}$).可得:4c=2a,$\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}$=1,a2=b2+c2
联立解得a=2,b2=3,c=1.
∴椭圆的标准方程为:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
(2)∵∠F2F1P=120°,∴直线PF1的方程为:y=-$\sqrt{3}$(x+1),
联立$\left\{\begin{array}{l}{y=-\sqrt{3}(x+1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,点P在第二象限,解得P$(-\frac{8}{5},\frac{3\sqrt{3}}{5})$.
∴△PF1F2的面积S=$\frac{1}{2}$yP•2c=$\frac{3\sqrt{3}}{5}$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)将函数f(x)的图象向左平移$\frac{π}{3}$个单位,得到函数y=g(x)的图象,当x∈[0,$\frac{π}{2}$]时,求函数g(x)的最大值与最小值,并指出取得最值时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下面五个命题中,其中正确的命题序号为②④⑤.
①若非零向量$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a$-$\overrightarrow b$|=|${\overrightarrow a}$|+|${\overrightarrow b}$|,则存在实数λ>0,使得$\overrightarrow b$=λ$\overrightarrow a$;
②函数 f(x)=4cos(2x-$\frac{π}{6}$)的图象关于点(-$\frac{π}{6}$,0)对称;
③在(-$\frac{π}{2}$,$\frac{π}{2}$)内方程 tanx=sinx有3个解;
④在△ABC中,A>B?sinA>sinB;
⑤若函数y=Acos(ωx+φ)(A>0,ω>0)为奇函数,则φ=kπ+$\frac{π}{2}$(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个几何体的三视图如图所示,那么这个几何体的体积是(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的前n项和Sn=3n2-n+1,则该数列的通项公式为${a_n}=\left\{{\begin{array}{l}{3,}&{n=1}\\{6n+2,}&{n≥2}\end{array}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.与曲线$\frac{{x}^{2}}{24}$+$\frac{{y}^{2}}{49}$=1共焦点,且与曲线$\frac{{y}^{2}}{36}$-$\frac{{x}^{2}}{64}$=1共渐近线的双曲线方程为(  )
A.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中,最小值是4的函数是(  )
A.y=x+$\frac{4}{x}$B.y=sinx+$\frac{4}{sinx}$(0<x<π)
C.y=ex+4e-xD.$y={log_3}x+\frac{4}{{{{log}_3}x}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.三棱锥A-BCD中,已知AB=CD=$\sqrt{5}$,AD=BC=$\sqrt{6}$,AC=BD=$\sqrt{7}$,那么该三棱锥外接球的表面积为(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等差数列{an}中,am=n,an=m  (m,n∈N+),则  am+n=(  )
A.mnB.m-nC.m+nD.0

查看答案和解析>>

同步练习册答案