精英家教网 > 高中数学 > 题目详情
已知动点P与双曲线.的两焦点F1,F2的距离之和为大于4的定值,且||•||的最大值为9.
(1)求动点P的轨迹E的方程;
(2)若A,B是曲线E上相异两点,点M(0,2)满足,求实数λ的取值范围.
【答案】分析:(1)先由双曲线的方程得到两焦点,设已知定值为2a,则,因此,动点P的轨迹E是以F1(-2,0),F2(2,0)为焦点,长轴长为2a的椭圆.利用待定系数法结合基本不等式即可求得椭圆的方程;
(2)设所求直线l的方程:y=kx-2,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量关系式即可求得实数λ的取值范围
,从而解决问题.
解答:解:(1)双曲线的焦点F1(-2,0).
设已知定值为2a,则,因此,动点P的轨迹E是以F1(-2,0),F2(2,0)为焦点,长轴长为2a的椭圆.
设椭圆方程为.(2分)
=a2,
∴a2=9,b2=a2-c2=5,
∴动点P的轨迹E的方程
(II)设A(x1,y1),B(x2,y2),则由点M(0,2)满足,得:
  且M,A,B三点共线,设直线为l,
当直线l的斜率存在时,设l:y=kx-2,则将直线的方程代入椭圆的方程,化简得:
(5+9k2)x2-36kx-9=0,根据根与系数的关系得:
  x1+x2=,x1x2=
将x1=-λx2,代入,消去x2,得:
化得:

解之得:实数λ的取值范围为[9-4,9+4].
点评:本小题主要考查圆锥曲线的轨迹问题、直线与圆锥曲线的综合问题等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P与双曲线
x2
2
-
y2
3
=1
的两个焦点F1、F2的距离之和为6.
(1)求动点P的轨迹C的方程;
(2)
PF1
PF2
=3
,求△PF1F2的面积;
(3)若已知D(0,3),M、N在曲线C上,且
DM
DN
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知动点P与双曲线2x2-2y2=1的两个焦点F1,F2的距离之和为4.
(1)求动点P的轨迹C的方程;
(2)若M为曲线C上的动点,以M为圆心,MF2为半径做圆M.若圆M与y轴有两个交点,求点M横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P与双曲线x2-y2=1的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为-
13

(1)求动点P的轨迹方程;
(2)设M(0,-1),若斜率为k(k≠0)的直线l与P点的轨迹交于不同的两点A、B,若要使|MA|=|MB|,试求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P与双曲线x2-
y2
3
=1
.的两焦点F1,F2的距离之和为大于4的定值,且|
PF1
|•|
PF2
|的最大值为9.
(1)求动点P的轨迹E的方程;
(2)若A,B是曲线E上相异两点,点M(0,2)满足
AM
MB
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P与双曲线
x2
2
-
y2
3
=1
的两个焦点F1、F2的距离之和为6.
(1)求动点P的轨迹方程;
(2)若已知D(0,3),点M、N在动点P的轨迹上,且
DM
DN
,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案