精英家教网 > 高中数学 > 题目详情

【题目】对于两个定义域均为D的函数f(x),g(x),若存在最小正实数M,使得对于任意x∈D,都有|f(x)﹣g(x)|≤M,则称M为函数f(x),g(x)的“差距”,并记作||f(x),g(x)||.
(1)求f(x)=sinx(x∈R),g(x)=cosx(x∈R)的差距;
(2)设f(x)= (x∈[1,e ]),g(x)=mlnx(x∈[1,e ]).(e≈2.718)
①若m=2,且||f(x),g(x)||=1,求满足条件的最大正整数a;
②若a=2,且||f(x),g(x)||=2,求实数m的取值范围.

【答案】
(1)解:由题意:|f(x)﹣g(x)|=|sinx﹣cosx|= |sin(x﹣ )|≤

当x=kπ+ ,k∈Z时取“=”,所以||f(x),g(x)||=


(2)解:①令h(x)=f(x)﹣g(x)= ﹣2lnx.则h′(x)= = ,令h′(x)=0,则x=16.列表:

x

(0,16)

16

(16,+∞)

h′(x)

0

+

h(x)

∵h(1)=1;当a=3时,h( )= ﹣3,由于e3>16,因此 >2,所以 ﹣3>﹣1;

当a=4时,h( )=e﹣4<﹣1,故满足条件的最大正整数为3.

②令h(x)=f(x)﹣g(x)= ﹣mlnx,则h′(x)= =

若m≤ ,则h′(x)≥0,从而h(x)在[1,e]上递增,又h(1)=1,h(e)= ﹣m,所以 ﹣m=2,m= ﹣2;

(ii)若m≥ ,则h′(x)≤0,从而h(x)在[1,e]上递减,又h(1)=1,h(e)= ﹣m,所以 ﹣m=﹣2,m= ﹣2;

(iii)若 <m< ,则由h′(x)=0,可得x=4m2,列表

x

1

(1,4m2)

4m2

(4m2,e)

e

h′(x)

0

+

h(x)

1

2m﹣mln(4m2)

﹣m

因为 ﹣m< <2,所以2m﹣mln(4m2)=﹣2,

令u(m)=2m﹣mln(4m2)=m(2﹣ln4)﹣2mlnm

∴u′(m)=2﹣ln4﹣2﹣2lnm=﹣ln4﹣2lnm=﹣2 ln2m<0,

∴u(m)>u( )= = ,故该情况不成立.

综上,m的取值范围是{ ﹣2, +2}


【解析】(1)直接根据题设“差距”定义可转化为三角函数求值问题;(2)①利用函数的单调性可直接求出最大正整数;②构造新函数h(x)=f(x)﹣g(x)= ﹣mlnx,
对h(x)求导,参数m分类讨论根据函数的单调性求出m的取值范围;
【考点精析】掌握函数的值和利用导数研究函数的单调性是解答本题的根本,需要知道函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法;一般的,函的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求数列{an}的通项公式an
(2)令 ,写出Tn关于n的表达式,并求满足Tn 时n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示).则分数在[70,80)内的人数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0),离心率为 ,左准线方程是x=﹣2,设O为原点,点A在椭圆C上,点B在直线y=2上,且OA⊥OB.

(1)求椭圆C的方程;
(2)求△AOB面积取得最小值时,线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角的对边分别为.若的面积为,且,则外接圆的面积为____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.

(1)求抛物线方程;

(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2lnx﹣ ﹣m,若关于x的方程f(f(x))=x恰有两个不相等的实数根,则m的取值范围是(
A.(2ln3﹣4,+∞)
B.(﹣∞,2ln3﹣4)
C.(﹣4,+∞)
D.(﹣∞,﹣4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知美国苹果公司生产某款iphone手机的年固定成本为40万美元,每生产1只还需另投入16美元.设苹果公司一年内共生产该款iphone手机x万只并全部销售完,每万只的销售收入为R(x)万美元,且R(x)=
(1)写出年利润W(万元)关于年产量x(万只)的函数解析式;
(2)当年产量为多少万只时,苹果公司在该款手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

同步练习册答案