精英家教网 > 高中数学 > 题目详情
7.设集合A={x|x2-3x-4<0},B={x|-3<x<1}.
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集为B,求a,b的值.

分析 (1)由一元二次不等式的解法可得集合A,进而由集合交集的意义计算可得答案;
(2)由一元二次不等式与一元二次方程的关系可得-3和1是方程2x2+ax+b=0的两根,进而由根与系数的关系的关系可得$\left\{\begin{array}{l}{(-3)+1=\frac{a}{2}}\\{(-3)×1=\frac{b}{2}}\end{array}\right.$,解可得a、b的值,即可得答案.

解答 解:(1)根据题意,A={x|x2-3x-4<0}={x|-1<x<4},
则A∩B={x|-1<x<1};
(2)若2x2+ax+b<0的解集为B={x|-3<x<1}.
则-3和1是方程2x2+ax+b=0的两根,
必有$\left\{\begin{array}{l}{(-3)+1=\frac{a}{2}}\\{(-3)×1=\frac{b}{2}}\end{array}\right.$,解可得a=3,b=4;
故a=4,b=-6.

点评 本题考查一元二次不等式的解法,涉及集合交集的运算,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax3+3x2+1,若至少存在两个实数m,使得f(-m),f(1)、f(m+2)成等差数列,则过坐标原点作曲线y=f(x)的切线可以作(  )
A.3条B.2条C.1条D.0条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=1,且点P(an,an+1)在直线y=x+2上;数列{bn}的前n项和为Sn,满足Sn=2bn-2,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=anbn,数列{cn}的前n项和为Tn,求Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在三个数${3^{\frac{1}{2}}},\frac{1}{3},{log_3}2$中,最小的数是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一质点从坐标原点出发运动,每次它可选择“上”,“下”,“左”,“右”中的一个方向移动一个长度单位.则移动4次又回到原点的不同的移动方法数有36种(写出具体数字).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:
137966191925271932812458569683
431257393027556488730113537989
据此估计,该运动员三次投篮恰有两次命中的概率为(  )
A.0.40B.0.30C.0.35D.0.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c为非零实数.
( I)若存在实数n,p,q满足:a2+b2+c2=n2+p2+q2=2,求证:$\frac{n^4}{a^2}+\frac{p^4}{b^2}+\frac{q^4}{c^2}$≥2;
( II)设函数f(x)=ax2+bx+c,若x∈{-1,0,1}时,|f(x)|≤1,求证:x∈[-1,1]时,|ax+b|≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,当k≥2时,$\left\{\begin{array}{l}{x_k}={x_{k-1}}+1-5[{T({\frac{k-1}{5}})-T({\frac{k-2}{5}})}]\\{y_k}={y_{k-1}}+T({\frac{k-1}{5}})-T({\frac{k-2}{5}})\end{array}\right.$,T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为(1,2);第2016棵树种植点的坐标应为(1,404).

查看答案和解析>>

同步练习册答案