精英家教网 > 高中数学 > 题目详情
1.已知集合A={x|x2-3x+2≤0},集合B={y|y=x2-4x+a},集合C={x|x2-ax-4≤0}.命题p:A∩B≠?;命题q:A∩C=A.
(1)若命题p为假命题,求实数a的取值范围;
(2)若命题p且q为真命题,求实数a的取值范围.

分析 (1)求出集合A、B,根据A∩B=Φ,求出a的范围即可;
(2)分别求出p,q为真时的a的范围,取交集即可.

解答 解:(1)∵A={x|x2-3x+2≤0},B={y|y=x2-4x+a},
∴A=[1,2],B=[a-4,+∞),---------------------------4分
若p为假命题,则A∩B=Φ,故a-4>2,即a>6.-------------------------7分
(2)命题p为真,则a≤6.------------------------------8分
命题q为真,即转化为当x∈[1,2]时,f(x)=x2-ax-4≤0恒成立,--------10分
(解法1)则$\left\{\begin{array}{l}f(1)=1-a-4≤0\\ f(2)=4-2a-4≤0\end{array}$解得a≥0.--------------------------13分
{(解法2)当x∈[1,2]时,a≥x-$\frac{4}{x}$恒成立,而x-$\frac{4}{x}$在[1,2]上单调递增,故a≥(x-$\frac{4}{x}$)max=0.------------------13分  }
故实数a的取值范围是[0,6].-------------------------15分.

点评 本题考查了集合的运算性质,考查二次函数的性质以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+$\frac{1}{x}$+ax,x∈(0,+∞)(a为实常数).
(1)若函数f(x)在x=1处取极值,求此时函数f(x)的最小值;
(2)若函数f(x)在区间(2,3)上存在极值,求实数a的取值范围;
(3)设各项为正的无穷数列{xn}满足lnxn+$\frac{1}{{{x_{n+1}}}}$<1(n∈N*),证明:x1≤1.
(提示:当0<q<1时,1+q+q2+q3+…+qn+…=$\frac{1}{1-q}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.点P(1,-2)关于直线2x-3y+5=0的对称点的坐标是(-3,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,设广告牌的高为xcm,宽为ycm
(1)试用x表示y;
(2)用x表示广告牌的面积S(x);
(2)广告牌的高取多少时,可使广告牌的面积S(x)最小?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一条渐近线的倾斜角为150°,则b的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在R上的函数f(x)既是奇函数又是周期函数,若f(x)的最小正周期是π,且当$x∈[0,\frac{π}{2})$时,f(x)=sinx,则$f(\frac{8}{3}π)$的值为(  )
A.$\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=x2(x-3)的单调递减区间是(  )
A.(-∞,0)B.(2,+∞)C.(0,2)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=ax2+x(a≠0)与$g(x)={(\frac{a+1}{a})}^{x}$在同一坐标系中的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在xOy平面上,将抛物线弧y=1-x2(0≤x≤1)、x轴、y轴围成的封闭图形记为D,如图中曲边三角形OAB及内部.记D绕y轴旋转一周而成的几何体为Ω,过点(0,y)(0≤y≤1)作Ω的水平截面,所得截面面积为(1-y)π,试构造一个平放的直三棱柱,利用祖暅原理得出Ω的体积值为$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案