本试题主要考查了导数在函数中的运用。
解:(1)因为f(x)=2
(x-a),所以
=6
-4ax=6x(x-
a).令
=0,得x=0或x=
a.…………2分
①若a<
,即0<
a<1时, 则当1
x
2时,
>0,所以f(x)在区间[1,2]上是增函数, 所以
h(a)=f(1)=2-2a.…………4分
②若
a<3,即1
a<2时, 则当1
x<
a时,
<0, 当
a<x
2时
>0, 所以f(x)在区间[1,
a]上是减函数, 所以.在区间[
a ,2]上是增函数, 所以.
h(a)=
=
…………6分
③若a
3,即
a
2时,当1
x
2时,
0,所以f(x)在区间[1,2]上是减函数, 所以
h(a)=f(2)=16-8a
综上所述,函数f(x)在区间[1,2]上的最小值是
…………8分
(2).因为方程
h(a)=k(a+1)有两个不同的实数解,令y=k(a+1),可得y=h(a)图象与直线y=k(a+1)有两个不同的交点,而直线y=k(a+1)恒过定点(-1,0),由图象可得的取值范围是(-8,-2).…………12分
(3).证明:不妨设
<
<
,由(2)知
>
>
,
=(
-
,
-
),
=(
-
,
-
), 所以
=(
-
)(
-
)+[
-
],因为
-
<0,
-
>0,
-
>0,
-
<0, 所以
<0. 又因为A,B,C三点不共线, 所以
,即
为钝角三角形…………16分