精英家教网 > 高中数学 > 题目详情

【题目】是曲线上的一个动点,曲线在点处的切线与轴、轴分别交于两点,点是坐标原点,①;②的面积为定值;③曲线上存在两点使得是等边三角形;④曲线上存在两点使得是等腰直角三角形,其中真命题的个数是( )

A.1B.2C.3D.4

【答案】D

【解析】

设点,得到切线方程后求得坐标,进而知中点,求得,从而可知①②正确;

过原点作倾斜角等于条射线与曲线交于,由对称性可知③正确;

过原点作条夹角等于的射线与曲线交于,由的值的变化过程,可知存在比值等于的时刻,从而知④正确.

设点,由得切线方程:,即

中点 ,①正确;

,②正确;

过原点作倾斜角等于条射线与曲线的交点为

由对称性可知中,,又

为等边三角形,③正确;

过原点作条夹角等于的射线与曲线交于点

当直线的倾斜角从减少到的过程中,的值从变化到

在此变化过程中必然存在的值为的时刻,此时为等腰直角三角形,④正确.

真命题的个数为

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四边形为矩形, ,的中点,沿折起,得到四棱锥,的中点为,在翻折过程中,得到如下有三个命题:

平面,且的长度为定值

三棱锥的最大体积为

③在翻折过程中,存在某个位置,使得.

其中正确命题的序号为__________.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请解答以下问题,要求解决两个问题的方法不同.

1)如图1,要在一个半径为1米的半圆形铁板中截取一块面积最大的矩形,如何截取?并求出这个最大矩形的面积.

2)如图2,要在一个长半轴为2米,短半轴为1米的半个椭圆铁板中截取一块面积最大的矩形,如何截取?并求出这个最大矩形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调递增区间;

(2)中,内角ABC所对的边分别为abc,若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱底面,点在棱上,且.

1)证明:平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到频数分布表和频率分布直方图如下.

组号

分组

频数

1

[0,2)

6

2

[2,4)

8

3

[4,6)

17

4

[6,8)

22

5

[8,10)

25

6

[10,12)

12

7

[12,14)

6

8

[14,16)

2

9

[16,18)

2

合计

100

(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的频率;

(2)求频率分布直方图中的ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)若,证明:当时,

2)若的极小值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C+y2=1,不与坐标轴垂直的直线l与椭圆C相交于MN两点.

(1)若线段MN的中点坐标为 (1,),求直线l的方程;

(2)若直线l过点Pp,0),点Qq,0)满足kQM+kQN=0,求pq的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱中,的中点,上一点,且.

1)证明:平面

2)求二面角余弦值的大小.

查看答案和解析>>

同步练习册答案