精英家教网 > 高中数学 > 题目详情
定义在R上的偶函数f(x)满足:f(x+1)=-f(x),且在[0,1]上是增函数,下面关于f(x)的判断:
①f(x)是周期函数;
②f(x)的图象关于直线x=1对称;
③f(x)在[1,2]上是减函数;
④f(x)在[-2,0]上是减函数.
其中正确的判断是    (把你认为正确的判断都填上).
【答案】分析:化简函数f(x):f(x+1)=-f(x),求出周期,判断①;利用偶函数单调性,判断②③④,推出正确结果.
解答:解:f(x+2)=-f(x+1)=f(x),所以函数f(x)是以2为周期的偶函数,所以①正确;
又函数在[0,1]上是增函数,所以②正确;③正确;④错误.
故答案为:①、②、③.
点评:本题考查函数的周期性,函数的单调性及单调区间,函数奇偶性的应用,考查学生分析问题解决问题的能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)是最小正周期为π的周期函数,且当x∈[0,
π
2
]
时,f(x)=sinx,则f(
3
)
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、定义在R上的偶函数f(x),当x≥0时有f(2+x)=f(x),且x∈[0,2)时,f(x)=2x-1,则f(2010)+f(-2011)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x),满足f(x+2)=f(x),且f(x)在[-3,-2]上是减函数,若α、β是锐角三角形中两个不相等的锐角,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:
①f(x)是周期函数;
②f(x)的图象关于x=l对称;
③f(x)在[l,2l上是减函数;
④f(2)=f(0),
其中正确命题的序号是
①②④
①②④
.(请把正确命题的序号全部写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在R上的偶函数f(x).当x≥0时,f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函数f(x)的解析式并画出函数的图象;
(Ⅱ)写出函数f(x)的值域.

查看答案和解析>>

同步练习册答案