精英家教网 > 高中数学 > 题目详情
已知l∥α,且l的方向向量为(2,m,1),平面α的法向量为,则m=________.
-8
(2,m,1)·=0,得m=-8.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.
(1)若PM=PA,求证:MN⊥AD;
(2)若二面角M-BD-A的大小为,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,分别为的中点,.

(1)证明:∥面
(2)求面与面所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ADEF与梯形ABCD所在的平面互相垂直,,点M在线段EC上(除端点外)

(1)当点M为EC中点时,求证:平面
(2)若平面与平面ABF所成二面角为锐角,且该二面角的余弦值为时,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.

(1)求PA的长;
(2)求二面角B-AF-D的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系中,设点是点关于坐标平面的对称点,则线段的长度等于         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体ABCD-A1B1C1D1中,若E是A1C1的中点,则直线CE与BD的位置关系是   .

查看答案和解析>>

同步练习册答案