精英家教网 > 高中数学 > 题目详情
如图,矩形ABCD中,AB=6,BC=2,沿对角线BD将△ABD向上折起,使点A移至点P,且点P在平面BCD内的投影O在CD上.
(1) 求二面角P-DB-C的正弦值;
(2) 求点C到平面PBD的距离.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

直线a ⊥平面,b∥,则a与b的关系为()
A.a⊥b且a与b相交B.a⊥b且a与b不相交
C.a⊥bD.a 与b不一定垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB="4," BC="CD=2, " AA="2, " E、E、F分别是棱AD、AA、AB的中点。
(1)  证明:直线EE//平面FCC
(2)  求二面角B-FC-C的余弦值。 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知中,斜边上的高,以为折痕,将折 起,使为直角。
(1)求证:平面平面;(2)求证:
(3) 求点到平面的距离;(4) 求点到平面的距离;
                    
      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间,下列命题正确的是(  )
A.若直线∥平面,直线,则
 
B.若, 平面,则
 
C.若两平面=, ,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图6,是圆柱的母线,是圆柱底面圆的直径,是底面圆周上异于的任意一点,
(1)求证:平面
(2)求三棱锥的体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 如图,在长方体   
(1)证明:当点;
(2)(理)在棱上是否存在点?若存在,求出的长;若不存在,请说明理由.
(文)在棱使若存在,求出的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,四棱锥PABCD的底面是一直角梯形,ABCDBAADCD=2AB
PA⊥底面ABCDEPC的中点,则BE与平面PAD的位置关系为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,假设平面,垂足分别是B、D,如果增加一个条件,就能推出BD⊥EF,现有下面4个条件:

所成的角相等;
内的射影在同一条直线上;

其中能成为增加条件的是_____________.(把你认为正确的条件的序号都填上)

查看答案和解析>>

同步练习册答案