精英家教网 > 高中数学 > 题目详情
3.如图,在△ABC中,已知$\overrightarrow{AP}$=$\overrightarrow{PC}$,$\overrightarrow{CQ}$=2$\overrightarrow{QB}$,设$\overrightarrow{BP}$=m•$\overrightarrow{AB}$+n•$\overrightarrow{AC}$.
(1)求m+n的值;
(2)已知|$\overrightarrow{AB}$|=c,|$\overrightarrow{AC}$|=b,求$\overrightarrow{AQ}$•$\overrightarrow{BP}$.

分析 (1)用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{BP}$,求出m,n的值;
(2)用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{AQ}$,计算数量级.

解答 解:(1)$\overrightarrow{BP}=\overrightarrow{BC}+\overrightarrow{CP}$=$\overrightarrow{AC}-\overrightarrow{AB}-\frac{1}{2}\overrightarrow{AC}$=-$\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,
∴m=-1,n=$\frac{1}{2}$.∴m+n=-$\frac{1}{2}$.
(2)$\overrightarrow{AQ}$=$\overrightarrow{AB}+\overrightarrow{BQ}$=$\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}$=$\overrightarrow{AB}+\frac{1}{3}(\overrightarrow{AC}-\overrightarrow{AB})$=$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$,
∴$\overrightarrow{AQ}$•$\overrightarrow{BP}$=($\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$)•(-$\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$)=-$\frac{2}{3}$$\overrightarrow{AB}$2+$\frac{1}{3}$$\overrightarrow{AB}•\overrightarrow{AC}$-$\frac{1}{3}\overrightarrow{AC}•\overrightarrow{AB}$+$\frac{1}{6}$$\overrightarrow{AC}$2=-$\frac{2}{3}$c2+$\frac{1}{6}$b2

点评 本体考查了平面向量的三角形法则和数量级运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.对定义域分别是Df,Dg的函数f(x)和g(x),有如下定义函数$h(x)=\left\{{\begin{array}{l}{f(x)g(x),x∈{D_f}且x∈{D_g}}\\{f(x),x∈{D_f}且x∉{D_g}}\\{g(x),x∉{D_f}且x∈{D_g}}\end{array}}\right.$
(1)若函数$f(x)=\frac{1}{x+1},g(x)={x^2}$,写出h(x)的解析式;
(2)在(1)的条件下,证明函数h(x)在(0,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.根据下列条件.求直线方程:
(1)经过点(3,0)且与直线2x+y-5=0垂直;
(2)经过点B(2,1)且与直线5x+2y+3=0的夹角等于45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法中正确的是(  )
A.“若$\overrightarrow a•\overrightarrow b=0$,则$\overrightarrow a⊥\overrightarrow b$”的否命题是“若$\overrightarrow a•\overrightarrow b≠0$,则$\overrightarrow a⊥\overrightarrow b$”
B.命题“?x∈R,恒有x2+1>0”的否定是“?x0∈R,使得${x_0}^2+1<0$”
C.?m∈R,使函数f(x)=x2+mx(x∈R)是奇函数
D.设p,q是简单命题,若p∧q是真命题,则(¬p)∨q也是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2sinx,将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位,再把横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变),得到函数y=g(x)的图象,求函数y=g(x)的解析式,并写出它的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}习前n顶和为Sn,且满足a1=1,an+2SnSn-1=0,(n≥2)
(1)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列.
(2)求{an}的通项an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知tan(α+β)=ntan(α-β),n≠-1,求证:$\frac{sin2β}{sin2α}$=$\frac{n-1}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆C1:x2+y2-$\frac{2}{\sqrt{a}}$x+$\frac{1}{a}$-$\frac{9}{4}$=0,C2:x2+y2-$\frac{2}{\sqrt{b}}$y+$\frac{1}{b}$-$\frac{1}{4}$=0,其中a>0,b>0,a+b=1,则两圆公切线有多少条(  )
A.1条或者3条B.1条或者2条C.2条或者3条D.4条或者3条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在x=1附近取△x=0.3,在四个函数①y=x,②y=x2,③y=x3,④y=$\frac{1}{x}$中,平均变化率最大的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案