精英家教网 > 高中数学 > 题目详情
8.已知数列{an}习前n顶和为Sn,且满足a1=1,an+2SnSn-1=0,(n≥2)
(1)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列.
(2)求{an}的通项an

分析 (1)把an=Sn-Sn-1(n≥2)代入an+2SnSn-1=0,整理后可得数列{$\frac{1}{{S}_{n}}$}是等差数列.
(2)利用(1)求出Sn,再由an=Sn-Sn-1(n≥2)求得{an}的通项an

解答 (1)证明:由an+2SnSn-1=0,(n≥2),得
Sn-Sn-1=-2SnSn-1,即$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}=2$(n≥2).
又$\frac{1}{{S}_{1}}=\frac{1}{{a}_{1}}=1$.
∴数列{$\frac{1}{{S}_{n}}$}是以1为首项,以2为公差的等差数列.
(2)解:由(1)得,$\frac{1}{{S}_{n}}=1+2(n-1)=2n-1$,
∴${S}_{n}=\frac{1}{2n-1}$.
则${a}_{n}={S}_{n}-{S}_{n-1}=\frac{1}{2n-1}-\frac{1}{2n-3}=-\frac{2}{(2n-1)(2n-3)}$(n≥2).
当n=1时,上式不成立.
∴${a}_{n}=\left\{\begin{array}{l}{1,n=1}\\{-\frac{2}{(2n-1)(2n-3)},n≥2}\end{array}\right.$.

点评 本题考查数列递推式,考查了等差关系的确定,训练了等差数列通项公式的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=|2x-1|,则函数g(x)=f(f(x))+lnx在[0,1]上的不同零点个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若|x-a|+|x-a2|≥2(a是常数)恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知圆柱的底面周长为8πcm,母线长为5cm,则它的体积为80πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在△ABC中,已知$\overrightarrow{AP}$=$\overrightarrow{PC}$,$\overrightarrow{CQ}$=2$\overrightarrow{QB}$,设$\overrightarrow{BP}$=m•$\overrightarrow{AB}$+n•$\overrightarrow{AC}$.
(1)求m+n的值;
(2)已知|$\overrightarrow{AB}$|=c,|$\overrightarrow{AC}$|=b,求$\overrightarrow{AQ}$•$\overrightarrow{BP}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=cos($\frac{π}{3}$+x)•cos($\frac{π}{3}$-x),g(x)=$\frac{1}{2}$sin2x-$\frac{1}{4}$,函数h(x)=f(x)-g(x),则h(x)取得最大值时x的集合为{x|x=kπ-$\frac{π}{8}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求等差数列-2,1,4,7…的通项公式和前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(a-1)x3+x2+(b-4)x+c为偶函数.则求函数g(x)=ax2+bx在区间[c,c+1]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=cosωx(sinωx+$\sqrt{3}$cosωx)(ω>0),如果存在实数x0,使得对任意的实数x,都有f(x0)≤f(x)≤f(x0+2016π)成立,则ω的最小值为(  )
A.$\frac{1}{2016π}$B.$\frac{1}{4032π}$C.$\frac{1}{2016}$D.$\frac{1}{4032}$

查看答案和解析>>

同步练习册答案