精英家教网 > 高中数学 > 题目详情
15.记函数y=ex在x=n(n=1,2,3,…)处的切线为ln.若切线ln与ln+1的交点坐标为(An,Bn),那么(  )
A.数列{An}是等差数列,数列{Bn}是等比数列
B.数列{An}与{Bn}都是等差数列
C.数列{An}是等比数列,数列{Bn}是等差数列
D.数列{An}与{Bn}都是等比数列

分析 求得函数的导数,可得切线的斜率和切点,运用点斜式方程可得切线ln的方程,ln+1的方程,解方程可得An,Bn,再由等差数列和等比数列的通项公式,即可判断.

解答 解:函数y=ex的导数为y′=ex
可得切线ln的方程为y-en=en(x-n),①
ln+1的方程为y-en+1=en+1(x-n-1),②
由①②解得An=n+$\frac{1}{e-1}$;
Bn=$\frac{{e}^{n+1}}{e-1}$,
即有数列{An}是首项为$\frac{e}{e-1}$,公差为1的等差数列,
数列{Bn}是首项为$\frac{{e}^{2}}{e-1}$,公比为e的等比数列.
故选:A.

点评 本题考查导数的运用:求切线的方程,考查等差数列和等比数列的判断,正确求导和运用点斜式方程是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.定义在R上的函数f(x),如果对任意的x都有f(x+6)≤f(x)+3,f(x+2)≥f(x)+1,f(4)=309,则f(2 014)=1314.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{4}$=1,点P(3$\sqrt{2}$,$\sqrt{2}$)在椭圆C上,直线l:y=$\frac{1}{3}$x+t(t≠0)与椭圆C交于A,B两点.
(1)证明:直线PA的斜率与直线PB的斜率之和为定值;
(2)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=($\sqrt{3}$tanx+1)cos2x.
(1)若α∈($\frac{π}{2}$,π),且cosα=-$\frac{\sqrt{5}}{5}$,求f(α)的值;
(2)讨论函数f(x)在x≥$\frac{π}{4}$,且x≤$\frac{3π}{4}$范围内的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设复数z=a+bi(a,b∈R)在复平面内的对应点为(-1,1),则|$\overline{z}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知曲线C1:y=ex与曲线C2:y=(x+a)2.若两个曲线在交点处有相同的切线,则实数a的值为2-ln4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知M是圆周上的一个定点,若在圆周上任取一点N,连接MN,则弦MN的长不小于圆半径的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,a、b、c分别为内角A、B、C的对边,且2sinAcosC=2sinB-sinC.
(1)求∠A的大小;
(2)在锐角△ABC中,a=$\sqrt{3}$,求c+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知如图所示的几何体中,四边形ABCD是边长为2的菱形,面PBC⊥面A BCD,点E是AD 的中点,PQ∥面ABCD且点Q在面ABCD上的射影Q′落在AB的延长线上,若PQ=1,PB=$\sqrt{2}$,且($\overrightarrow{PB}+\overrightarrow{PC}$)•$\overrightarrow{BC}$=0,$\overrightarrow{AB}•\overrightarrow{AD}$=2
(I )求证面PBC⊥面PBE
(II )求平面PBQ与平面PAD所成钝二面角的正切值.

查看答案和解析>>

同步练习册答案