| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
分析 根据已知中A是圆上固定的一定点,在圆上其他位置任取一点B,连接A、B两点,它是一条弦,我们求出B点位置所有基本事件对应的弧长,及满足条件AB长大于半径的基本事件对应的弧长,代入几何概型概率计算公式,即可得到答案
解答 解:在圆上其他位置任取一点N,设圆半径为R,
则N点位置所有情况对应的弧长为圆的周长2πR,
其中满足条件MN的长度不小于半径长度的对应的弧长为 $\frac{2}{3}$•2πR,
则AB弦的长度大于等于半径长度的概率P=$\frac{\frac{2}{3}•2πR}{2πR}=\frac{2}{3}$;
故选D.
点评 本题考查的知识点是几何概型,其中根据已知条件计算出所有基本事件对应的几何量及满足条件的基本事件对应的几何量是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 数列{An}是等差数列,数列{Bn}是等比数列 | |
| B. | 数列{An}与{Bn}都是等差数列 | |
| C. | 数列{An}是等比数列,数列{Bn}是等差数列 | |
| D. | 数列{An}与{Bn}都是等比数列 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | θ=$\frac{π}{12}$,t的最小值为$\frac{π}{12}$ | B. | θ=$\frac{π}{12}$,t的最小值为$\frac{π}{6}$ | ||
| C. | θ=$\frac{π}{6}$,t的最小值为$\frac{π}{6}$ | D. | θ=$\frac{π}{6}$,t的最小值为$\frac{π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分数 | [60,70) | [70,80) | [80,90) | [90,100] |
| 奖金 | a | 2a | 3a | 4a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com