精英家教网 > 高中数学 > 题目详情
17.若定义在R上的函数$f(x)={log_3}({2x+\sqrt{4{x^2}+a}})$为奇函数,则实数a的值为(  )
A.-1B.0C.1D.2

分析 利用奇函数的性质,定义在R上的奇函数f(0)=0得到关于a 的方程解之.

解答 解:因为函数是定义在R上的奇函数,
所以f(0)=0,即$lo{g}_{3}\sqrt{a}$=0,所以a=1;
故选C.

点评 本题考查了定义在r上的奇函数的性质f(0)=0的运用;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=(  )
A.{2}B.{1,2,4}C.{1,2,4,6}D.{1,2,3,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a,b,c∈R+,ab+bc+ca=1,求证:
(Ⅰ)a2+b2+c2≥1;
(Ⅱ)$a+b+c≥\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义在R上的函数f(x),如果对任意的x都有f(x+6)≤f(x)+3,f(x+2)≥f(x)+1,f(4)=309,则f(2 014)=1314.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某三棱锥的三视图如图所示,则其体积为(  )
A.4B.8C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设点P在面积为2的正△ABC内部运动,若动点P使得△PBC,△PAB,△PAC的面积都不大于1,则动点P的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某学员在一次射击测试中射靶9次,命中环数如下:8,7,9,5,4,9,10,7,4;则命中环数的方差为$\frac{40}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{4}$=1,点P(3$\sqrt{2}$,$\sqrt{2}$)在椭圆C上,直线l:y=$\frac{1}{3}$x+t(t≠0)与椭圆C交于A,B两点.
(1)证明:直线PA的斜率与直线PB的斜率之和为定值;
(2)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知M是圆周上的一个定点,若在圆周上任取一点N,连接MN,则弦MN的长不小于圆半径的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案