精英家教网 > 高中数学 > 题目详情
17.渝州集团对所有员工进行了职业技能测试从甲、乙两部门中各任选10名员工的测试成绩(单位:分)数据的茎叶图如图所示.
(1)若公司决定测试成绩高于85分的员工获得“职业技能好能手”称号,求从这20名员工中任选三人,其中恰有两人获得“职业技能好能手”的概率;
(2)公司结合这次测试成绩对员工的绩效奖金进行调整(绩效奖金方案如表),若以甲部门这10人的样本数据来估计该部门总体数据,且以频率估计概率,从甲部门所有员工中任选3名员工,记绩效奖金不小于3a的人数为ξ,求ξ的分布列及数学期望.
 分数[60,70)[70,80)[80,90)[90,100]
 奖金 a 2a 3a 4a

分析 (1)利用古典概型的概率公式求解即可.
(2)求出ξ的可能取值为ξ=0,1,2,3;求出概率,得到分布列,然后求解期望即可.

解答 解:(1)20名员工中85(分)以上有5人,${p_1}=\frac{{C_5^2•C_{15}^1}}{{C_{20}^3}}=\frac{5}{38}$;
(2)甲部门中任选一人绩效工资不低于3a的概率为$\frac{2}{5}$,
所以ξ的可能取值为ξ=0,1,2,3;
$P({ξ=0})=C_3^0{({\frac{3}{5}})^3}=\frac{27}{125}$;$P({ξ=1})=C_3^1{({\frac{2}{5}})^1}•{({\frac{3}{5}})^2}=\frac{54}{125}$;$P({ξ=2})=C_3^2{({\frac{2}{5}})^2}•{({\frac{3}{5}})^1}=\frac{36}{125}$;$P({ξ=3})=C_3^3{({\frac{2}{5}})^3}=\frac{8}{125}$,
ξ的分布列为:

ξ0123
P$\frac{27}{125}$$\frac{54}{125}$$\frac{36}{125}$$\frac{8}{125}$
ξ的期望为$E(ξ)=0×\frac{27}{125}+1×\frac{54}{125}+2×\frac{36}{125}+3×\frac{8}{125}=\frac{150}{125}=\frac{6}{5}$

点评 本题考查离散性随机变量的分布列以及期望的求法,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知M是圆周上的一个定点,若在圆周上任取一点N,连接MN,则弦MN的长不小于圆半径的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个学校高一、高二、高三的学生人数之比为2:3:5,若用分层抽样的方法抽取容量为200的样本,则应从高三学生中抽取的人数为(  )
A.40B.60C.80D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知如图所示的几何体中,四边形ABCD是边长为2的菱形,面PBC⊥面A BCD,点E是AD 的中点,PQ∥面ABCD且点Q在面ABCD上的射影Q′落在AB的延长线上,若PQ=1,PB=$\sqrt{2}$,且($\overrightarrow{PB}+\overrightarrow{PC}$)•$\overrightarrow{BC}$=0,$\overrightarrow{AB}•\overrightarrow{AD}$=2
(I )求证面PBC⊥面PBE
(II )求平面PBQ与平面PAD所成钝二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点
(1)求证:平面ABE⊥平面BEF
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角θ∈[$\frac{π}{4}$,$\frac{π}{3}$],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在多面体ABCDEF中,正三角形BCE所在平面与菱形ABCD所在的平面垂直,FD⊥平面ABCD,且$BC=4,FD=2\sqrt{3}$.
(1)判断直线EF平面ABCD的位置关系,并说明理由;
(2)若∠CBA=60°,求二面角A-FB-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,AP=AB=AC=a,AD=$\sqrt{2}$a,PA⊥底面ABCD.
(1)求证:平面PCD⊥平面PAC;
(2)在棱PC上是否存在一点E,使得四棱锥E-ABCD的体积为$\frac{{\sqrt{2}{a^3}}}{6}$?若存在,求出λ=$\frac{CE}{CP}$的值?若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,将直角梯形ABCD绕AB边所在的直线旋转一周,由此形成的几何体的体积是$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义域为R的奇函数,且当x≥0时,f(x)=log2(x+1)+2x-a,则满足f(x2-3x-1)+9<0的实数x的取值范围是(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

同步练习册答案