精英家教网 > 高中数学 > 题目详情
2.如图,在多面体ABCDEF中,正三角形BCE所在平面与菱形ABCD所在的平面垂直,FD⊥平面ABCD,且$BC=4,FD=2\sqrt{3}$.
(1)判断直线EF平面ABCD的位置关系,并说明理由;
(2)若∠CBA=60°,求二面角A-FB-E的余弦值.

分析 (1)过点E作EH⊥BC于点H,连接HD,推导出平面ABCD⊥平面BCE,从而平面EF∥平面ABCD.
(2)连接AC,HA,推导出HA⊥BC,以H为坐标原点,HB,HA,HE所在直线分别为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角A-FB-E的余弦值.

解答 解:(1)直线EF与平面ABCD平行,理由如下:
如图,过点E作EH⊥BC于点H,连接HD,因为在正三角形BCE中,BC=4,所以$EH=2\sqrt{3}$,
因为平面ABCD⊥平面BCE,EH?平面ABCD,
故平面EF∥平面ABCD.
(2)如图,连接AC,HA,由(1)可得H为BC的中点,
又∠CBA=60°,故△ABC为等边三角形,
所以HA⊥BC.
又EH⊥平面ABCD,故HB,HA,HE两两垂直,以H为坐标原点,
HB,HA,HE所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系.
则$B(2,0,0),F(-4,2\sqrt{3},2\sqrt{3}),E(0,0,2\sqrt{3}),A(0,2\sqrt{3},0)$,
所以$\overrightarrow{BF}=(-6,2\sqrt{3},2\sqrt{3}),\overrightarrow{BA}=(-2,2\sqrt{3},0),\overrightarrow{BE}=(-2,0,2\sqrt{3})$,
设平面BEF的法向量为$\overrightarrow{n_1}=({x_1},{y_1},{z_1})$,
则$\left\{\begin{array}{l}{n_1}•\overrightarrow{BF}=0\\{n_1}•\overrightarrow{BE}=0\end{array}\right.$,即$\left\{\begin{array}{l}-6{x_1}+2\sqrt{3}{y_1}+2\sqrt{3}{z_1}=0\\-2{x_1}+2\sqrt{3}{z_1}=0\end{array}\right.$,
取z1=1,则$\overrightarrow{n_1}=(\sqrt{3},2,1)$是平面BEF的一个法向量,
设平面ABF的法向量为$\overrightarrow{n_2}=({x_2},{y_2},{z_2})$,
则$\left\{\begin{array}{l}{n_2}•\overrightarrow{BF}=0\\{n_2}•\overrightarrow{BE}=0\end{array}\right.$,即$\left\{\begin{array}{l}-6{x_2}+2\sqrt{3}{y_2}+2\sqrt{3}{z_2}=0\\-2{x_2}+2\sqrt{3}{y_2}=0\end{array}\right.$,
取y2=1,得$\overrightarrow{n_2}=(\sqrt{3},1,2)$是平面ABF的一个法向量.
所以$cos\left?{\overrightarrow{n_1},\overrightarrow{n_2}}\right>=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|{\overrightarrow{n_1}}|•|{\overrightarrow{n_2}}|}}=\frac{3+2+2}{{\sqrt{8}×\sqrt{8}}}=\frac{7}{8}$,
由图可知二面角A-FB-E为钝角,故二面角A-FB-E的余弦值是$-\frac{7}{8}$.

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在实数集R中定义一种运算“*”,对任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a,b∈R,a*b=b*a;(2)对任意a∈R,a*0=a;(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.关于函数f(x)=(3x)*$\frac{1}{3x}$的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(-∞,-$\frac{1}{3}$),($\frac{1}{3}$,+∞).
其中所有正确说法的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|(x-1)(x-3)(x-5)<0},B={x∈N|-2<x<6},则A∩B的元素的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{y≥\frac{1}{2}x}\\{2x+y≤10}\end{array}\right.$,向量$\overrightarrow{a}$=(y2+x2,m),$\overrightarrow{b}$=(1,1),且$\overrightarrow{a}∥\overrightarrow{b}$,则m的最小值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.渝州集团对所有员工进行了职业技能测试从甲、乙两部门中各任选10名员工的测试成绩(单位:分)数据的茎叶图如图所示.
(1)若公司决定测试成绩高于85分的员工获得“职业技能好能手”称号,求从这20名员工中任选三人,其中恰有两人获得“职业技能好能手”的概率;
(2)公司结合这次测试成绩对员工的绩效奖金进行调整(绩效奖金方案如表),若以甲部门这10人的样本数据来估计该部门总体数据,且以频率估计概率,从甲部门所有员工中任选3名员工,记绩效奖金不小于3a的人数为ξ,求ξ的分布列及数学期望.
 分数[60,70)[70,80)[80,90)[90,100]
 奖金 a 2a 3a 4a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.2016年年底以来,国内共享单车突然就火爆了起来,由于其符合低碳出行理念,共享单车已经越来越多地引起人们的注意.某市调查市民共享单车的使用情况,随机采访10位经常使用共享单车的市民,收集到他们每周使用的事件如下(单位:小时):6.2  7.0  7.6  5.9  6.7  7.3  6.5  8.1  7.8  7.9
(1)根据以上数据,画出使用事件的茎叶图;
(2)求出其中位数,平均数,方差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知两个平面向量$\overrightarrow a,\overrightarrow b$满足$\overrightarrow a=(1,1)$,$\overrightarrow b=(3,4)$,若$k\overrightarrow a+\overrightarrow b$与$k\overrightarrow a-\overrightarrow b$垂直,则实数k=$±\frac{{5\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.两条平行直线3x-2y+1=0与6x-4y-2=0之间的距离等于$\frac{{2\sqrt{13}}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z1=a-5i在复平面上对应的点在直线5x+2y=0上,复数z=$\frac{5+2i}{{z}_{1}}$(i是虚数单位),则z2017=(  )
A.1B.-1C.-iD.i

查看答案和解析>>

同步练习册答案