精英家教网 > 高中数学 > 题目详情
10.设x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{y≥\frac{1}{2}x}\\{2x+y≤10}\end{array}\right.$,向量$\overrightarrow{a}$=(y2+x2,m),$\overrightarrow{b}$=(1,1),且$\overrightarrow{a}∥\overrightarrow{b}$,则m的最小值为$\frac{5}{4}$.

分析 由两个向量平行得到m=y2+x2,即求区域内点到原点距离的最小值,利用数形结合可求.

解答 解:由已知约束条件得到可行域如图:向量$\overrightarrow{a}$=(y2+x2,m),$\overrightarrow{b}$=(1,1),且$\overrightarrow{a}∥\overrightarrow{b}$,则m=x2+y2,m的最小值为图中M(1,$\frac{1}{2}$)到原点距离的平方,
所以m的最小值为12+$(\frac{1}{2})^{2}$=$\frac{5}{4}$;
故答案为:$\frac{5}{4}$.

点评 本题考查了简单线性规划问题;利用数形结合是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知曲线C1:y=ex与曲线C2:y=(x+a)2.若两个曲线在交点处有相同的切线,则实数a的值为2-ln4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设x>0,集合$M=\left\{{{x^2},{{log}_4}x}\right\},N=\left\{{{2^x},a}\right\}$,若M∩N={1},则M∪N=(  )
A.{0,1,2,4}B.{0,1,2}C.{1,4}D.{0,1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(x-1,3),$\overrightarrow{b}$=(1,y),其中x,y都为正实数,若$\overrightarrow{a}⊥\overrightarrow{b}$,则$\frac{1}{x}+\frac{1}{3y}$的最小值为(  )
A.2B.2$\sqrt{2}$C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知如图所示的几何体中,四边形ABCD是边长为2的菱形,面PBC⊥面A BCD,点E是AD 的中点,PQ∥面ABCD且点Q在面ABCD上的射影Q′落在AB的延长线上,若PQ=1,PB=$\sqrt{2}$,且($\overrightarrow{PB}+\overrightarrow{PC}$)•$\overrightarrow{BC}$=0,$\overrightarrow{AB}•\overrightarrow{AD}$=2
(I )求证面PBC⊥面PBE
(II )求平面PBQ与平面PAD所成钝二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=(1-cos2x)cos2x,x∈R,设f(x)的最大值是A,最小正周期为T,则f(AT)的值等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在多面体ABCDEF中,正三角形BCE所在平面与菱形ABCD所在的平面垂直,FD⊥平面ABCD,且$BC=4,FD=2\sqrt{3}$.
(1)判断直线EF平面ABCD的位置关系,并说明理由;
(2)若∠CBA=60°,求二面角A-FB-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}中,a1=2,an+1=$\frac{n+1}{2n}{a}_{n}(n∈{N}^{*})$.
(Ⅰ)证明数列{$\frac{{a}_{n}}{n}$}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{4n-{a}_{n}}$,若数列{bn}的前n项和是Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点M,N是平面区域$\left\{\begin{array}{l}{2x-y-4≤0}\\{x-2y+4≥0}\\{x+y-2≥0}\end{array}\right.$内的两个动点,$\overrightarrow{a}$=(1,2),则$\overrightarrow{MN}$•$\overrightarrow{a}$的最大值为(  )
A.2$\sqrt{5}$B.10C.12D.8

查看答案和解析>>

同步练习册答案