精英家教网 > 高中数学 > 题目详情
19.数列{an}中,a1=2,an+1=$\frac{n+1}{2n}{a}_{n}(n∈{N}^{*})$.
(Ⅰ)证明数列{$\frac{{a}_{n}}{n}$}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{4n-{a}_{n}}$,若数列{bn}的前n项和是Tn,求证:Tn<2.

分析 (Ⅰ)化简已知条件,即可证明数列{$\frac{{a}_{n}}{n}$}是等比数列,求出首项与公比,然后求数列{an}的通项公式;
(Ⅱ)化简数列的通项公式,利用放缩法推出${b}_{n}≤\frac{1}{{2}^{n-1}}$,然后利用等比数列求和,证明结论.

解答 解:(Ⅰ)由题设$\frac{{a}_{n+1}}{n+1}=\frac{1}{2}×\frac{{a}_{n}}{n}$,数列$\left\{\frac{{a}_{n}}{n}\right\}$是首项为2,公比$q=\frac{1}{2}$的等比数列
所以$\frac{{a}_{n}}{n}=2×{(\frac{1}{2})}^{n-1}={2}^{2-n}$,${a}_{n}=n×{2}^{2-n}=\frac{4n}{{2}^{n}}$;
(Ⅱ)证明:${b}_{n}=\frac{{a}_{n}}{4n-{a}_{n}}=\frac{\frac{4n}{{2}^{n}}}{4n-\frac{4n}{{2}^{n}}}=\frac{1}{{2}^{n}-1}$,
注意对任意n∈N*,2n-1≥2n-1
所以${T}_{n}≤1+\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n-1}}=2(1-\frac{1}{{2}^{n}})<2$.

点评 本题考查数列的递推关系式的应用,考查数列求和以及放缩法的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.向量在$\overrightarrow{a}$=(m,l),$\overrightarrow{b}$=(n,l),则$\frac{m}{n}$=1 是$\overrightarrow{a}∥\overrightarrow{b}$的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{y≥\frac{1}{2}x}\\{2x+y≤10}\end{array}\right.$,向量$\overrightarrow{a}$=(y2+x2,m),$\overrightarrow{b}$=(1,1),且$\overrightarrow{a}∥\overrightarrow{b}$,则m的最小值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.2016年年底以来,国内共享单车突然就火爆了起来,由于其符合低碳出行理念,共享单车已经越来越多地引起人们的注意.某市调查市民共享单车的使用情况,随机采访10位经常使用共享单车的市民,收集到他们每周使用的事件如下(单位:小时):6.2  7.0  7.6  5.9  6.7  7.3  6.5  8.1  7.8  7.9
(1)根据以上数据,画出使用事件的茎叶图;
(2)求出其中位数,平均数,方差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知两个平面向量$\overrightarrow a,\overrightarrow b$满足$\overrightarrow a=(1,1)$,$\overrightarrow b=(3,4)$,若$k\overrightarrow a+\overrightarrow b$与$k\overrightarrow a-\overrightarrow b$垂直,则实数k=$±\frac{{5\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.与向量$\overrightarrow a=({4,3})$方向相反的单位向量是$({-\frac{4}{5},-\frac{3}{5}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.两条平行直线3x-2y+1=0与6x-4y-2=0之间的距离等于$\frac{{2\sqrt{13}}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{9}x,x>0}\\{{4}^{-x}+\frac{3}{2},x≤0}\end{array}\right.$,则f(27)+f(-log43)的值为(  )
A.6B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“-3<a<1”是“存在x∈R,使得|x-a|+|x+1|<2”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

同步练习册答案