20£®ÒÑÖªµãM£¬NÊÇÆ½ÃæÇøÓò$\left\{\begin{array}{l}{2x-y-4¡Ü0}\\{x-2y+4¡Ý0}\\{x+y-2¡Ý0}\end{array}\right.$ÄÚµÄÁ½¸ö¶¯µã£¬$\overrightarrow{a}$=£¨1£¬2£©£¬Ôò$\overrightarrow{MN}$•$\overrightarrow{a}$µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®2$\sqrt{5}$B£®10C£®12D£®8

·ÖÎö ¸ù¾ÝÌâÒâ×÷³ö¿ÉÐÐÓò£¬Æ½ÒÆÏòÁ¿£¬ÀûÓÃÏòÁ¿ÊýÁ¿»ýµÄ¼¸ºÎÒâÒå¼´ÇóÔÚ$\overrightarrow{a}$ÉϵÄͶӰÅжÏABÁ½µãµÄλÖ㬼´¿ÉµÃµ½½áÂÛ

½â´ð ½â£ºÆ½ÃæÇøÓò$\left\{\begin{array}{l}{2x-y-4¡Ü0}\\{x-2y+4¡Ý0}\\{x+y-2¡Ý0}\end{array}\right.$µÄ¿ÉÐÐÓòÈçͼ£ºÆ½ÒÆ$\overrightarrow{a}$ÖÁ¿ÉÐÐÓòµÄM£¬
ÓÉ¿ÉÐÐÓò¿ÉÖª£¬$\overrightarrow{MN}•\overrightarrow{a}$µÄ×î´óÖµ¾ÍÊÇ$\overrightarrow{MN}$ÔÚ$\overrightarrow{a}$ÉϵÄͶӰȡµÃ×î´óÖµ£®
ÓÉ$\left\{\begin{array}{l}{2x-y-4=0}\\{x+y-2=0}\end{array}\right.$¿ÉµÃM£¨2£¬0£©£¬ÓÉ$\left\{\begin{array}{l}{2x-y-4=0}\\{x-2y+4=0}\end{array}\right.$µÃµ½N£¨4£¬4£©£¬$\overrightarrow{MN}$=£¨2£¬4£©£¬
´Ëʱ$\overrightarrow{MN}$•$\overrightarrow{a}$=1¡Á2+2¡Á4=10£®
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²éÏßÐԹ滮¡¢ÏòÁ¿µÄ×ø±ê±íʾ¡¢Æ½ÃæÏòÁ¿ÊýÁ¿»ýµÄ¼¸ºÎÒâÒåµÈ»ù´¡ÖªÊ¶£¬¿¼²éÊýÐνáºÏµÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x¡Ý1}\\{y¡Ý\frac{1}{2}x}\\{2x+y¡Ü10}\end{array}\right.$£¬ÏòÁ¿$\overrightarrow{a}$=£¨y2+x2£¬m£©£¬$\overrightarrow{b}$=£¨1£¬1£©£¬ÇÒ$\overrightarrow{a}¡Î\overrightarrow{b}$£¬ÔòmµÄ×îСֵΪ$\frac{5}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Á½ÌõƽÐÐÖ±Ïß3x-2y+1=0Óë6x-4y-2=0Ö®¼äµÄ¾àÀëµÈÓÚ$\frac{{2\sqrt{13}}}{13}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{lo{g}_{9}x£¬x£¾0}\\{{4}^{-x}+\frac{3}{2}£¬x¡Ü0}\end{array}\right.$£¬Ôòf£¨27£©+f£¨-log43£©µÄֵΪ£¨¡¡¡¡£©
A£®6B£®9C£®10D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªÒÔFΪ½¹µãµÄÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©ÉϵÄÁ½µãA£¬BÂú×ã$\overrightarrow{AF}$=3$\overrightarrow{FB}$£¬ÈôÏÒABµÄÖе㵽׼ÏߵľàÀëΪ$\frac{16}{3}$£¬ÔòÅ×ÎïÏߵķ½³ÌΪy2=8x£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚÈýÀâ×¶ABC-A1B1C1ÖУ¬²àÃæACC1A1¡Íµ×ÃæABC£¬¡ÏA1AC=60¡ã£¬AC=2AA1=4£¬µãD£¬E·Ö±ðÊÇAA1£¬BCµÄÖе㣮
£¨¢ñ£©Ö¤Ã÷£ºDE¡ÎÆ½ÃæA1B1C£»
£¨¢ò£©ÈôAB=2£¬¡ÏBAC=60¡ã£¬ÇóÈýÀâ×¶A1-BDEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¸´Êýz1=a-5iÔÚ¸´Æ½ÃæÉ϶ÔÓ¦µÄµãÔÚÖ±Ïß5x+2y=0ÉÏ£¬¸´Êýz=$\frac{5+2i}{{z}_{1}}$£¨iÊÇÐéÊýµ¥Î»£©£¬Ôòz2017=£¨¡¡¡¡£©
A£®1B£®-1C£®-iD£®i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¡°-3£¼a£¼1¡±ÊÇ¡°´æÔÚx¡ÊR£¬Ê¹µÃ|x-a|+|x+1|£¼2¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö·Ç±ØÒªÌõ¼þB£®±ØÒª·Ç³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È·Ç³ä·ÖÓַDZØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èô¶¨ÒåÔÚ£¨-¡Þ£¬1£©¡È£¨1£¬+¡Þ£©Éϵĺ¯Êýy=f£¨x£©Âú×ãf£¨1+x£©=f£¨1-x£©£¬ÇÒµ±x¡Ê£¨1£¬+¡Þ£©Ê±£¬f£¨x£©=|$\frac{2x-3}{x-1}$|ÔòÏÂÁнáÂÛÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®´æÔÚt¡ÊR£¬Ê¹f£¨x£©¡Ý2ÔÚ[t-$\frac{1}{2}$£¬t+$\frac{1}{2}$]ÉϺã³ÉÁ¢
B£®´æÔÚt¡ÊR£¬Ê¹0¡Üf£¨x£©¡Ü2ÔÚ[t-$\frac{1}{2}$£¬t+$\frac{1}{2}$]ÉϺã³ÉÁ¢
C£®´æÔÚt¡ÊR£¬Ê¹f£¨x£©ÔÚ[t-$\frac{1}{2}$£¬t+$\frac{1}{2}$]ÉÏʼÖÕ´æÔÚ·´º¯Êý
D£®´æÔÚt¡ÊR+£¬Ê¹f£¨x£©ÔÚ[t-$\frac{1}{2}$£¬t+$\frac{1}{2}$]ÉÏʼÖÕ´æÔÚ·´º¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸