精英家教网 > 高中数学 > 题目详情
1.设x>0,集合$M=\left\{{{x^2},{{log}_4}x}\right\},N=\left\{{{2^x},a}\right\}$,若M∩N={1},则M∪N=(  )
A.{0,1,2,4}B.{0,1,2}C.{1,4}D.{0,1,4}

分析 先求出M={1,0},N={2,1},由此能求出M∪N.

解答 解:∵设x>0,集合$M=\left\{{{x^2},{{log}_4}x}\right\},N=\left\{{{2^x},a}\right\}$,M∩N={1},
∴1∈M,且1∈N,
当x2=1时,x=1或x=-1(舍),
此时M={1,0},N={2,1},M∩N={1},成立,
M∪N={0,1,2};
当log4x=1时,x=4,
此时M={16,1},N={16,1},M∩N={1,16},不成立.
综上:M∪N={0,1,2}.
故选:B.

点评 本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知$P({\sqrt{3},\frac{1}{2}})$在椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上,F为右焦点,PF⊥垂直于x轴,A,B,C,D为椭圆上的四个动点,且AC,BD交于原点O.
(1)求椭圆C的方程;
(2)判断直线l:$\frac{m+n}{2}x+({m-n})y=\frac{{\sqrt{3}+1}}{2}m+\frac{{\sqrt{3}-1}}{2}n({m,n∈R})$与椭圆的位置关系;
(3)设A(x1,y1),B(x2,y2)满足$\frac{{y}_{1}{y}_{2}}{\overrightarrow{OA}•\overrightarrow{OB}}$=$\frac{1}{5}$,判断kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在实数集R中定义一种运算“*”,对任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a,b∈R,a*b=b*a;(2)对任意a∈R,a*0=a;(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.关于函数f(x)=(3x)*$\frac{1}{3x}$的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(-∞,-$\frac{1}{3}$),($\frac{1}{3}$,+∞).
其中所有正确说法的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.向量在$\overrightarrow{a}$=(m,l),$\overrightarrow{b}$=(n,l),则$\frac{m}{n}$=1 是$\overrightarrow{a}∥\overrightarrow{b}$的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2alnx+x2-(a+4)x+1(a为常数)
(1)若a>0,讨论f(x)的单调性;
(2)若对任意的 a∈(1,$\sqrt{2}$),都存在 x0∈(3,4]使得不等式f(x0)+ln a+1>m(a-a2)+2a ln$\frac{4}{e}$成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合$A=\left\{{x|{{log}_2}x<0}\right\},B=\left\{{m|{m^2}-2m<0}\right\}$,则A∪B=(  )
A.(-∞,2)B.(0,1)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|(x-1)(x-3)(x-5)<0},B={x∈N|-2<x<6},则A∩B的元素的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{y≥\frac{1}{2}x}\\{2x+y≤10}\end{array}\right.$,向量$\overrightarrow{a}$=(y2+x2,m),$\overrightarrow{b}$=(1,1),且$\overrightarrow{a}∥\overrightarrow{b}$,则m的最小值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.两条平行直线3x-2y+1=0与6x-4y-2=0之间的距离等于$\frac{{2\sqrt{13}}}{13}$.

查看答案和解析>>

同步练习册答案