精英家教网 > 高中数学 > 题目详情
6.设集合$A=\left\{{x|{{log}_2}x<0}\right\},B=\left\{{m|{m^2}-2m<0}\right\}$,则A∪B=(  )
A.(-∞,2)B.(0,1)C.(0,2)D.(1,2)

分析 容易用区间分别表示集合A,B,然后进行并集的运算即可.

解答 解:A=(0,1),B=(0,2);
∴A∪B=(0,2).
故选C.

点评 考查描述法、区间表示集合的概念,对数函数的单调性,以及并集的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥CD,CD⊥AC,过CD的平面分别与PA,PB交于点E,F.
(1)求证:CD⊥平面PAC;
(2)求证:AB∥EF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数($\frac{1-ai}{a+i}$)2017=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD丄平面CBD,若AM丄平面ABD,且AM=$\sqrt{2}$
(1)求证:DM⊥平面ABC;
(2)求二面角C-BM-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设x>0,集合$M=\left\{{{x^2},{{log}_4}x}\right\},N=\left\{{{2^x},a}\right\}$,若M∩N={1},则M∪N=(  )
A.{0,1,2,4}B.{0,1,2}C.{1,4}D.{0,1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在长方体ABCD-A1B1C1D1中,AB=4,AD=2,AA1=2,点E在棱AB上移动.
(1)当AE=1时,求证:直线D1E⊥平面A1DC1
(2)在(1)的条件下,求${V_{{C_1}-{A_1}DE}}:{V_{{C_1}-{A_1}{D_1}D}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(x-1,3),$\overrightarrow{b}$=(1,y),其中x,y都为正实数,若$\overrightarrow{a}⊥\overrightarrow{b}$,则$\frac{1}{x}+\frac{1}{3y}$的最小值为(  )
A.2B.2$\sqrt{2}$C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=(1-cos2x)cos2x,x∈R,设f(x)的最大值是A,最小正周期为T,则f(AT)的值等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标平面内,已知A(0,5),B(-1,3),C(3,t).
(1)若t=1,求证:△ABC为直角三角形;
(2)求实数t的值,使$|{\overrightarrow{AB}+\overrightarrow{AC}}|$最小;
(3)若存在实数λ,使$\overrightarrow{AB}=λ•\overrightarrow{AC}$,求实数λ、t的值.

查看答案和解析>>

同步练习册答案