精英家教网 > 高中数学 > 题目详情
13.已知集合A={x|(x-1)(x-3)(x-5)<0},B={x∈N|-2<x<6},则A∩B的元素的个数为(  )
A.1B.2C.3D.4

分析 求出集合A,B的等价条件,结合集合交集的定义进行计算即可.

解答 解:A={x|(x-1)(x-3)(x-5)<0}={x|3<x<5或x<1},
B={x∈N|-2<x<6}={0,1,2,3,4,5},
则A∩B={0,4},
即A∩B的元素的个数为2个,
故选:B

点评 本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=($\sqrt{3}$tanx+1)cos2x.
(1)若α∈($\frac{π}{2}$,π),且cosα=-$\frac{\sqrt{5}}{5}$,求f(α)的值;
(2)讨论函数f(x)在x≥$\frac{π}{4}$,且x≤$\frac{3π}{4}$范围内的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,a、b、c分别为内角A、B、C的对边,且2sinAcosC=2sinB-sinC.
(1)求∠A的大小;
(2)在锐角△ABC中,a=$\sqrt{3}$,求c+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设x>0,集合$M=\left\{{{x^2},{{log}_4}x}\right\},N=\left\{{{2^x},a}\right\}$,若M∩N={1},则M∪N=(  )
A.{0,1,2,4}B.{0,1,2}C.{1,4}D.{0,1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个学校高一、高二、高三的学生人数之比为2:3:5,若用分层抽样的方法抽取容量为200的样本,则应从高三学生中抽取的人数为(  )
A.40B.60C.80D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(x-1,3),$\overrightarrow{b}$=(1,y),其中x,y都为正实数,若$\overrightarrow{a}⊥\overrightarrow{b}$,则$\frac{1}{x}+\frac{1}{3y}$的最小值为(  )
A.2B.2$\sqrt{2}$C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知如图所示的几何体中,四边形ABCD是边长为2的菱形,面PBC⊥面A BCD,点E是AD 的中点,PQ∥面ABCD且点Q在面ABCD上的射影Q′落在AB的延长线上,若PQ=1,PB=$\sqrt{2}$,且($\overrightarrow{PB}+\overrightarrow{PC}$)•$\overrightarrow{BC}$=0,$\overrightarrow{AB}•\overrightarrow{AD}$=2
(I )求证面PBC⊥面PBE
(II )求平面PBQ与平面PAD所成钝二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在多面体ABCDEF中,正三角形BCE所在平面与菱形ABCD所在的平面垂直,FD⊥平面ABCD,且$BC=4,FD=2\sqrt{3}$.
(1)判断直线EF平面ABCD的位置关系,并说明理由;
(2)若∠CBA=60°,求二面角A-FB-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a,b均为正数,且a+b=1,c>1,则($\frac{{a}^{2}+1}{2ab}$-1)•c+$\frac{\sqrt{2}}{c-1}$的最小值为3$\sqrt{2}$.

查看答案和解析>>

同步练习册答案