精英家教网 > 高中数学 > 题目详情
2.将函数y=sin(2x+$\frac{π}{6}$)图象上的点M(θ,$\frac{\sqrt{3}}{2}$)(0<θ<$\frac{π}{4}$)向右平移t(t>0)个单位长度得到点M′.若M′位于函数y=sin2x的图象上,则(  )
A.θ=$\frac{π}{12}$,t的最小值为$\frac{π}{12}$B.θ=$\frac{π}{12}$,t的最小值为$\frac{π}{6}$
C.θ=$\frac{π}{6}$,t的最小值为$\frac{π}{6}$D.θ=$\frac{π}{6}$,t的最小值为$\frac{π}{12}$

分析 利用函数y A=sin(ωx+φ)的图象变换规律,得出结论.

解答 解:将函数y=sin(2x+$\frac{π}{6}$)图象上的点M(θ,$\frac{\sqrt{3}}{2}$)(0<θ<$\frac{π}{4}$)向右平移t(t>0)个单位长度得到点M′,
故有sin(2θ+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,∴θ=$\frac{π}{12}$,点M′( θ+t,$\frac{\sqrt{3}}{2}$),即M′($\frac{π}{12}$+t,$\frac{\sqrt{3}}{2}$).
若M′位于函数y=sin2x的图象上,则$\frac{\sqrt{3}}{2}$=sin2($\frac{π}{12}$+t),∴t的最小值为$\frac{π}{12}$,
故选:A.

点评 本题主要考查函数y  A=sin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.某三棱锥的三视图如图所示,则其体积为(  )
A.4B.8C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.平面α过正方体ABCD-A1B1C1D1的面对角线$AB_1^{\;}$,且平面α⊥平面C1BD,平面α∩平面ADD1A1=AS,则∠A1AS的正切值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设复数z=a+bi(a,b∈R)在复平面内的对应点为(-1,1),则|$\overline{z}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\frac{π}{4}<x<\frac{π}{2}$,设a=sinx,b=cosx,c=tanx,则(  )
A.a<b<cB.b<a<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知M是圆周上的一个定点,若在圆周上任取一点N,连接MN,则弦MN的长不小于圆半径的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$y=\frac{3+x}{x-2},x∈[3,6]$
(1)判断并证明函数的单调性;
(2)求此函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)的定义域是(0,$\frac{π}{2}$),f′(x)是它的导函数,且f(x)+tanx•f′(x)>0在定义域内恒成立,则(  )
A.f($\frac{π}{6}$)>$\sqrt{2}$f($\frac{π}{4}$)B.$\sqrt{2}$sin1•f(1)>f($\frac{π}{4}$)C.f($\frac{π}{6}$)>$\sqrt{3}$f($\frac{π}{3}$)D.$\sqrt{2}$f($\frac{π}{4}$)>$\sqrt{3}$f($\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点
(1)求证:平面ABE⊥平面BEF
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角θ∈[$\frac{π}{4}$,$\frac{π}{3}$],求a的取值范围.

查看答案和解析>>

同步练习册答案