| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{1}{2}$ |
分析 推导出A1C⊥BD,A1C⊥BC1,从而A1C⊥平面C1BD,以AA1为侧棱补作一个正方体AEFG-A1PQS,使得侧面AGRA1与平面ADD1A1共面,连结AQ,则AQ∥CA1,连结QB1,交A1R于S,则平面AQB1就是平面α,且AS为所求作,由此能求出结果.
解答 解:正方体ABCD-A1B1C1D1中,BD⊥AC,BD⊥AA1,![]()
∵AC∩AA1=A,∴BD⊥平面AA1C,∴A1C⊥BD,
同理,得A1C⊥BC1,
∵BD∩BC1=B,∴A1C⊥平面C1BD,
如图,以AA1为侧棱补作一个正方体AEFG-A1PQS,
使得侧面AGRA1与平面ADD1A1共面,
连结AQ,则AQ∥CA1,连结QB1,交A1R于S,则平面AQB1就是平面α,且AS为所求作,
∵AQ∥CA1,∴AQ⊥平面C1BD,
∵AQ?平面α,∴平面α⊥平面C1BD,
∴tan∠A1AS=$\frac{{A}_{1}S}{A{A}_{1}}$=$\frac{1}{2}$.
故选:D.
点评 本题考查平角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查数形结合思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | -1 | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | θ=$\frac{π}{12}$,t的最小值为$\frac{π}{12}$ | B. | θ=$\frac{π}{12}$,t的最小值为$\frac{π}{6}$ | ||
| C. | θ=$\frac{π}{6}$,t的最小值为$\frac{π}{6}$ | D. | θ=$\frac{π}{6}$,t的最小值为$\frac{π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{{3\sqrt{3}}}{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com