精英家教网 > 高中数学 > 题目详情
4.已知圆心为C的圆经过A(1,1)和B(2,-2),且圆心C在直线L:x-y+1=0上,求圆心为C的圆的方程.

分析 根据题意,设圆心坐标为(a,a+1),圆的半径为r,结合圆所过点的坐标可得(a-1)2+(a+1-1)2=(a-2)2+(a+1+2)2,解可得a的值,即可得圆心的坐标,由两点间距离公式计算可得r,将圆心、r的值代入圆的标准方程即可得答案.

解答 解:根据题意,圆心C在直线L:x-y+1=0上,设圆心坐标为(a,a+1),圆的半径为r,
又由圆经过A(1,1)和B(2,-2),
则有(a-1)2+(a+1-1)2=(a-2)2+(a+1+2)2
解可得:a=-3,
则圆心C坐标为(-3,-2),
则r2=[(-3)-1]2+(-3)2=25,
则圆C的方程为:(x+3)2+(y+2)2=25.

点评 本题考查圆的标准方程,关键是求出圆心的坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知a∈R,设函数f(x)=ax-lnx的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=$\frac{lnx+2}{x}$+a(x-1)-2.
(1)当a=0时,求函数f(x)的极值;
(2)若对任意x∈(0,1)∪(1,+∞),不等式$\frac{f(x)}{1-x}$<$\frac{a}{x}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某三棱锥的三视图如图所示,则其体积为(  )
A.4B.8C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{\begin{array}{l}({4a-3})x+2a-4,x≤t\\ 2{x^3}-6x,x>t\end{array}\right.$,无论t取何值,函数f(x)在R上总是不单调,则实数a的取值范围是(  )
A.(-∞,1)B.$[{\frac{1}{4},+∞})$C.$[{\frac{3}{4},+∞})$D.$({-∞,\frac{3}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某学员在一次射击测试中射靶9次,命中环数如下:8,7,9,5,4,9,10,7,4;则命中环数的方差为$\frac{40}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图 已知四边形 ABCD 为直角梯形,AB⊥AD,DC∥AB,且边 AB、AD、DC 的长分别为 7cm,4cm,4cm,分别以 AB、AD、DC 三边所在直线为旋转轴,求所得几何体体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.平面α过正方体ABCD-A1B1C1D1的面对角线$AB_1^{\;}$,且平面α⊥平面C1BD,平面α∩平面ADD1A1=AS,则∠A1AS的正切值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$y=\frac{3+x}{x-2},x∈[3,6]$
(1)判断并证明函数的单调性;
(2)求此函数的最大值和最小值.

查看答案和解析>>

同步练习册答案