精英家教网 > 高中数学 > 题目详情
14.已知函数$y=\frac{3+x}{x-2},x∈[3,6]$
(1)判断并证明函数的单调性;
(2)求此函数的最大值和最小值.

分析 变形可知y=$\frac{5}{x-2}$+1.(1)利用定义法判断即可;
(2)结合(1)可知当x=3时y取最大值,当x=6时y取最小值,进而计算可得结论.

解答 解:由题可知y=$\frac{3+x}{x-2}$=$\frac{5+x-2}{x-2}$=$\frac{5}{x-2}$+1.
(1)函数y=$\frac{3+x}{x-2}$在[3,6]上单调递减.
证明如下:
任取x1、x2∈[3,6],不妨设x1<x2,则$\frac{5}{{x}_{2}-2}$-$\frac{5}{{x}_{1}-2}$=$\frac{5({x}_{1}-{x}_{2})}{({x}_{1}-2)({x}_{2}-2)}$,
由于x1-x2<0,且x1-2>0,x2-2>0,
所以$\frac{5}{{x}_{2}-2}$-$\frac{5}{{x}_{1}-2}$<0,即函数y=$\frac{5}{x-2}$在[3,6]上单调递减,
所以函数y=$\frac{3+x}{x-2}$在[3,6]上单调递减.
(2)由(1)可知,当x=3时y取最大值$\frac{3+3}{3-2}$=6,
当x=6时y取最小值$\frac{3+6}{6-2}$=$\frac{9}{4}$.

点评 本题考查函数的单调性,考查求函数的最值,考查利用定义法判断函数的单调性,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知圆心为C的圆经过A(1,1)和B(2,-2),且圆心C在直线L:x-y+1=0上,求圆心为C的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{5}}{3}$,右顶点A(3,0),直线l与x轴交于点A,与y轴交于点E.
(1)求椭圆C的方程;
(2)若直线l与椭圆C的另一交点为D,P为弦AD的中点,是否存在着定点Q,使得OP⊥EQ恒成立?若存在,求出Q点的坐标,若不存在,请说明理由;
(3)若OM∥l,交椭圆C于点M,在(2)的条件下,求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数y=sin(2x+$\frac{π}{6}$)图象上的点M(θ,$\frac{\sqrt{3}}{2}$)(0<θ<$\frac{π}{4}$)向右平移t(t>0)个单位长度得到点M′.若M′位于函数y=sin2x的图象上,则(  )
A.θ=$\frac{π}{12}$,t的最小值为$\frac{π}{12}$B.θ=$\frac{π}{12}$,t的最小值为$\frac{π}{6}$
C.θ=$\frac{π}{6}$,t的最小值为$\frac{π}{6}$D.θ=$\frac{π}{6}$,t的最小值为$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“(x-1)(x+2)=0”是“x=1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1,F2分别是椭圆mx2+y2=m(0<m<1)的左、右焦点,P为椭圆上任意一点,若$\frac{|\overrightarrow{P{F}_{2}}{|}^{2}+|\overrightarrow{P{F}_{1}}|}{|\overrightarrow{P{F}_{1}}|}$的最小值为$\frac{4}{3}$,则椭圆的离心率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sin(ωx+$\frac{π}{3}$)-$\frac{1}{2}$cos(ωx-$\frac{7π}{6}$)(ω>0),满足f(-$\frac{π}{6}$)=$\frac{3}{4}$,则满足题意的ω的最小值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若点P是曲线$y=\frac{3}{2}{x^2}-2lnx$上任意一点,则点P到直线$y=x-\frac{5}{2}$的距离的最小值为(  )
A.$\sqrt{2}$B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.关于函数y=tan(2x+$\frac{2π}{3}$),下列说法正确的是(  )
A.是奇函数B.在区间$(\frac{π}{12},\frac{7π}{12})$上单调递增
C.$(-\frac{π}{12},0)$为其图象的一个对称中心D.最小正周期为π

查看答案和解析>>

同步练习册答案