精英家教网 > 高中数学 > 题目详情
9.“(x-1)(x+2)=0”是“x=1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义进行判断即可.

解答 解:由(x-1)(x+2)=0得x=1或x=-2,
则“(x-1)(x+2)=0”是“x=1”的必要不充分条件,
故选:B

点评 本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{\begin{array}{l}({4a-3})x+2a-4,x≤t\\ 2{x^3}-6x,x>t\end{array}\right.$,无论t取何值,函数f(x)在R上总是不单调,则实数a的取值范围是(  )
A.(-∞,1)B.$[{\frac{1}{4},+∞})$C.$[{\frac{3}{4},+∞})$D.$({-∞,\frac{3}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱锥A-BCD中,已知△ABD,△BCD都是边长为2的等边三角形,E为BD中点,且AE⊥平面BCD,F为线段AB上一动点,记$\frac{BF}{BA}=λ$.
(1)当$λ=\frac{1}{3}$时,求异面直线DF与BC所成角的余弦值;
(2)当CF与平面ACD所成角的正弦值为$\frac{{\sqrt{15}}}{10}$时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\frac{π}{4}<x<\frac{π}{2}$,设a=sinx,b=cosx,c=tanx,则(  )
A.a<b<cB.b<a<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,正三角形ABE与菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中点,N是CE的中点.
(I)求证:EM⊥AD;
(II)求证:MN∥平面ADE;
(III)求点A到平面BCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$y=\frac{3+x}{x-2},x∈[3,6]$
(1)判断并证明函数的单调性;
(2)求此函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知e是自然对数的底数,函数f(x)=(ax2+x)ex,若f(x)在[-1,1]上是单调增函数,则a的取值范围是(  )
A.[-$\frac{2}{3}$,0]B.(-∞,0)∪[$\frac{2}{3}$,+∞)C.[0,$\frac{2}{3}$]D.(-∞,-$\frac{2}{3}$]∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过本地养鱼场年利润率的调研,得到如图所示年利润率的频率分布直方图.对远洋捕捞队的调研结果是:年利润率为60%的可能性为0.6,不赔不赚的可能性为0.2,亏损30%的可能性为0.2.假设该公司投资本地养鱼场的资金为x(x≥0)千万元,投资远洋捕捞队的资金为y(y≥0)千万元.
(1)利用调研数据估计明年远洋捕捞队的利润ξ的分布列和数学期望Eξ.
(2)为确保本地的鲜鱼供应,市政府要求该公司对本地养鱼场的投资不得低于远洋捕捞队的一半.适用调研数据,给出公司分配投资金额的建议,使得明年两个项目的利润之和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点P在圆C:x2+y2=4上,而Q为P在x轴上的投影,且点N满足$\overrightarrow{PN}=\overrightarrow{NQ}$,设动点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)若A,B是曲线E上两点,且|AB|=2,O为坐标原点,求△AOB的面积的最大值.

查看答案和解析>>

同步练习册答案