| A. | [-$\frac{2}{3}$,0] | B. | (-∞,0)∪[$\frac{2}{3}$,+∞) | C. | [0,$\frac{2}{3}$] | D. | (-∞,-$\frac{2}{3}$]∪[0,+∞) |
分析 求出原函数的导函数,分a=0和a≠0两种情况讨论,a≠0时由导函数的判别式大于0可知导函数有两个零点,分a>0和a<0两种情况进一步讨论,可知a>0时不合题意,a<0时需要导函数在[-1,1]上恒大于等于0列式求a的取值范围.
解答 解:由f(x)=(ax2+x)ex,得:
f′(x)=(2ax+1)ex+(ax2+x)ex=[ax2+(2a+1)x+1]ex,
①当a=0时,f′(x)=(x+1)ex,f′(x)≥0在[-1,1]上恒成立,
当且仅当x=-1时取等号,故a=0符合要求;
②当a≠0时,令g(x)=ax2+(2a+1)x+1,
因为△=(2a+1)2-4a=4a2+1>0,
所以g(x)有两个不相等的实数根x1,x2,不妨设x1>x2,
因此f(x)有极大值又有极小值.
若a>0,因为g(-1)g(0)=-a<0,
所以f(x)在(-1,1)内有极值点,
故f(x)在[-1,1]上不单调.
若a<0,可知x1>0>x2,因为g(x)的图象开口向下,要使f(x)在[-1,1]上单调,
因为g(0)=1>0,必须满足$\left\{\begin{array}{l}{g(1)≥0}\\{g(-1)≥0}\end{array}\right.$,即$\left\{\begin{array}{l}{3a+2≥0}\\{-a≥0}\end{array}\right.$,所以-$\frac{2}{3}$≤a≤0.
综上可知,a的取值范围是[-$\frac{2}{3}$,0],
故选:A.
点评 本题主要考查函数的单调性与其导函数的正负之间的关系,考查了分类讨论的数学思想方法,训练了方程的根与二次函数的图象之间的关系,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | ∅ | C. | [0,10] | D. | (0,10] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com