精英家教网 > 高中数学 > 题目详情
11.已知函数$f(x)=\frac{1}{2}{x^2}+acosx$,g(x)是f(x)的导函数.
(1)若f(x)在$(\frac{π}{2},f(\frac{π}{2}))$处的切线方程为$y=\frac{π+2}{2}x-\frac{{{π^2}+4π}}{8}$,求a的值;
(2)若a≥0且f(x)在x=0时取得最小值,求a的取值范围.

分析 (1)求出函数f(x)的导数,可得切线的斜率,结合已知切线方程,可得a的值;
(2)求出f(x)的导数,可得g(x)的解析式和导数,讨论a=0,a>0,分0<a≤1,a>1,求出单调区间和极值、最值,结合零点存在定理,即可得到a的范围.

解答 解:(1)函数$f(x)=\frac{1}{2}{x^2}+acosx$,
f′(x)=x-asinx,f′($\frac{π}{2}$)=$\frac{π}{2}$-a=$\frac{π+2}{2}$,
所以a=-1,经验证a=-1合题意;
(2)g(x)=f′(x)=x-asinx,g′(x)=1-acosx,
①当a=0时,f(x)=$\frac{1}{2}$x2,显然在x=0时取得最小值,∴a=0合题意;
②当a>0时,
(i)当$\frac{1}{a}$≥1即0<a≤1时,g′(x)≥0恒成立,
∴g(x)在(-∞,+∞)上单调递增,又g(0)=0,
∴当x<0时,g(x)<0 即f′(x)<0,当x>0时,g(x)>0 即f′(x)>0
∴f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;
∴f(x) 在x=0时取得最小值,
∴当0<a≤1时合题意;
(ii)当0<$\frac{1}{a}$<1即a>1时,在(0,π)内存在唯一x0=arccos$\frac{1}{a}$使g′(x)=0,
当x∈(0,x0)时,∵y=cosx在(0,π)上是单调递减的,∴cosx>cosx0=$\frac{1}{a}$,
∴g′(x)=a ($\frac{1}{a}$-cosx)<0,∴g(x) 在(0,x0)上单调递减,∴g(x)<g(0)=0.
即f′(x)<0,∴f(x)在(0,x0)内单调递减;
∴x∈(0,x0)时,f(x)<0  这与f(x)在x=0时取得最小值即f(x)≥f(0)矛盾,
∴当a>1时不合题意;
综上,a的取值范围是[0,1].

点评 本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查分类讨论思想方法以及方程思想、转化思想,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知e是自然对数的底数,函数f(x)=(ax2+x)ex,若f(x)在[-1,1]上是单调增函数,则a的取值范围是(  )
A.[-$\frac{2}{3}$,0]B.(-∞,0)∪[$\frac{2}{3}$,+∞)C.[0,$\frac{2}{3}$]D.(-∞,-$\frac{2}{3}$]∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}中,a1=-l,an+1=2an+(3n-1)•3n+1,(n∈N*),则其通项an=31•2n+(3n-10)•3n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点P在圆C:x2+y2=4上,而Q为P在x轴上的投影,且点N满足$\overrightarrow{PN}=\overrightarrow{NQ}$,设动点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)若A,B是曲线E上两点,且|AB|=2,O为坐标原点,求△AOB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M($\frac{3π}{4}$,0)对称,且在区间[0,$\frac{π}{2}$]上是单调函数,则ω=$\frac{2}{3}$或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如表:
人数 x
y
ABC
A144010
Ba36b
C28834
若抽取学生n人,成绩分为A(优秀),B(良好),C(及格)三个等次,设x,y分别表示数学成绩与地理成绩,例如:表中地理成绩为A等级的共有14+40+10=64(人),数学成绩为B等级且地理成绩为C等级的有8人.已知x与y均为A等级的概率是0.07.
(Ⅰ)设在该样本中,数学成绩的优秀率是30%,求a,b的值;
(Ⅱ)已知a≥7,b≥6,求数学成绩为A等级的人数比C等级的人数多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.${({{x^2}-\frac{1}{x}+3})^4}$的展开式中常数项是117.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,互相垂直的两条道路l1、l2相交于O点,点P与l1、l2的距离分别为2千米、3千米,过点P建一条直线道路AB,与l1、l2分别交于A、B两点. 
(1)当∠BAO=45°时,试求OA的长;
(2)若使△AOB的面积最小,试求OA、OB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AB⊥AD,AD=AB=1.AA1=CD=2.E为棱DD1的中点.
(1)证明:B1C1⊥平面BDE;
(2)求二面角D-BE-C1的大小.

查看答案和解析>>

同步练习册答案