分析 (1)设P(xp,yp),利用${x_p}^2+{y_p}^2=4$,结合Q(xp,0),设N(x',y'),通过$\overrightarrow{PN}=\overrightarrow{NQ}$有$\left\{\begin{array}{l}{x_p}=x'\\{y_p}=2y'\end{array}\right.$代入圆的方程,得到曲线E的方程.
(2)设A(x1,y1),B(x2,y2),直线AB方程为:y=kx+t,联立$\left\{\begin{array}{l}{x^2}+4{y^2}=4\\ y=kx+t\end{array}\right.$利用韦达定理以及弦长公式,表示出三角形的面积,然后求解最值,
解答 解:(1)设P(xp,yp),∴${x_p}^2+{y_p}^2=4$,∵PQ⊥x轴,所以Q(xp,0),
又设N(x',y'),由$\overrightarrow{PN}=\overrightarrow{NQ}$有$\left\{\begin{array}{l}{x_p}=x'\\{y_p}=2y'\end{array}\right.$代入${x^2}+{y^2}=4有\frac{{x{'^2}}}{4}+y{'^2}=1$.
即曲线E的方程为$\frac{x^2}{4}+{y^2}=1$;
(2)设A(x1,y1),B(x2,y2),直线AB方程为:y=kx+t,
联立$\left\{\begin{array}{l}{x^2}+4{y^2}=4\\ y=kx+t\end{array}\right.$得(4k2+1)x2+8ktx+4(t2-1)=0,故${x_1}+{x_2}=-\frac{8kt}{{1+4{k^2}}},{x_1}{x_2}=\frac{{4({{t^2}-1})}}{{1+4{k^2}}}$,
由4=|AB|2=(1+k2)(x2-x1)2=(1+k2)[(x2+x1)2-4x1x2],得${t^2}=({4{k^2}+1})-\frac{{{{({4{k^2}+1})}^2}}}{{4({{k^2}+1})}}$,
故原点O到直线AB的距离$d=\frac{|t|}{{\sqrt{1+{k^2}}}}$,∴$S=\frac{1}{2}×2d=\frac{|t|}{{\sqrt{1+{k^2}}}}$,
令u=$\frac{1+4{k}^{2}}{1+{k}^{2}}$,则${S^2}=-\frac{1}{4}{u^2}+u=-\frac{1}{4}{({u-2})^2}+1$,又∵u=$\frac{1+4{k}^{2}}{1+{k}^{2}}$=4-$\frac{3}{1+{k}^{2}}$∈[1,4),当$u=2时,S_{max}^2=1$.
当斜率不存在时,△AOB不存在,综合上述可得△AOB面积的最大值为1.
点评 本题考查轨迹方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 是奇函数 | B. | 在区间$(\frac{π}{12},\frac{7π}{12})$上单调递增 | ||
| C. | $(-\frac{π}{12},0)$为其图象的一个对称中心 | D. | 最小正周期为π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f({-\frac{3}{2}})>f({{a^2}+2a+\frac{5}{2}})$ | B. | $f({-\frac{3}{2}})<f({{a^2}+2a+\frac{5}{2}})$ | C. | $f({-\frac{3}{2}})≥f({{a^2}+2a+\frac{5}{2}})$ | D. | $f({-\frac{3}{2}})≤f({{a^2}+2a+\frac{5}{2}})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com