分析 通过对an+1=2an+(3n-1)•3n+1(n∈N*)变形、构成新数列{bn=$\frac{{a}_{n}}{{2}^{n}}$},从而利用累加法可求出当n≥2时bn-b1的表达式,通过错位相减法计算可得bn的表达式,进而可得结论.
解答 解:因为an+1=2an+(3n-1)•3n+1,(n∈N*),
所以$\frac{{a}_{n+1}}{{2}^{n+1}}$=$\frac{{a}_{n}}{{2}^{n}}$+(3n-1)•$({\frac{3}{2})}^{n+1}$,
记bn=$\frac{{a}_{n}}{{2}^{n}}$,则b1=$\frac{{a}_{1}}{2}$=-$\frac{1}{2}$,
bn+1-bn=(3n-1)•$({\frac{3}{2})}^{n+1}$,
bn-bn-1=[3(n-1)-1]•$(\frac{3}{2})^{n}$,
bn-1-bn-2=[3(n-2)-1]•$(\frac{3}{2})^{n-1}$,
…
b2-b1=(3•1-1)•$(\frac{3}{2})^{2}$,
累加得当n≥2时,bn-b1=[3(n-1)-1]•$(\frac{3}{2})^{n}$+[3(n-2)-1]•$(\frac{3}{2})^{n-1}$+…+(3•1-1)•$(\frac{3}{2})^{2}$,
$\frac{3}{2}$(bn-b1)=[3(n-1)-1]•$(\frac{3}{2})^{n+1}$+[3(n-2)-1]•$(\frac{3}{2})^{n}$+[3(n-3)-1]•$(\frac{3}{2})^{n-1}$+…+(3•1-1)•$(\frac{3}{2})^{3}$,
两式相减,得:$-\frac{1}{2}$(bn-b1)=-[3(n-1)-1]•$(\frac{3}{2})^{n+1}$+3•[$(\frac{3}{2})^{n}$+$(\frac{3}{2})^{n-1}$+…+$(\frac{3}{2})^{3}$]+2•$(\frac{3}{2})^{2}$
=$\frac{9}{2}$+3•$\frac{(\frac{3}{2})^{3}[1-({\frac{3}{2})}^{n-2}]}{1-\frac{3}{2}}$-(3n-4)•$(\frac{3}{2})^{n+1}$
=$\frac{9}{2}$-6[$(\frac{3}{2})^{3}$-$(\frac{3}{2})^{n+1}$]-(3n-4)•$(\frac{3}{2})^{n+1}$
=-$\frac{63}{4}$-(3n-10)•$(\frac{3}{2})^{n+1}$,
所以bn-b1=$\frac{63}{2}$+(6n-20)•$(\frac{3}{2})^{n+1}$,
所以bn=b1+$\frac{63}{2}$+(6n-20)•$(\frac{3}{2})^{n+1}$=31+(6n-20)•$(\frac{3}{2})^{n+1}$(n≥2),
又因为b1=$\frac{{a}_{1}}{2}$=-$\frac{1}{2}$满足上式,
所以bn=$\frac{{a}_{n}}{{2}^{n}}$=31+(6n-20)•$(\frac{3}{2})^{n+1}$,
所以an=31•2n+(3n-10)•3n+1,
故答案为:31•2n+(3n-10)•3n+1.
点评 本题考查数列的通项及前n项和,考查运算求解能力,考查考查错位相减法,考查累加法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一的实数λ,使得$\overrightarrow{a}$=λ$\overrightarrow{b}$ | |
| B. | 已知随机变量ξ服从正态分布N(1,σ2),若P(ξ≤4)=0.79,则P(ξ≤-2)=0.21 | |
| C. | “φ=$\frac{3π}{2}$”是“y=sin(2x+φ)为偶函数”的充要条件 | |
| D. | 函数y=f(1+x)与函数y=f(1-x)的图象关于直线x=1对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{8i}{5}$ | B. | $\frac{8i}{5}$ | C. | $-\frac{6}{5}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com