精英家教网 > 高中数学 > 题目详情
11.在等比数列{an}中,a1=1,a4=8,则数列{an}的前5项和是(  )
A.$\frac{85}{2}$B.32C.64D.31

分析 利用等比数列的通项公式与求和公式即可得出.

解答 解:设等比数列{an}的公比为q,∵a1=1,a4=8,∴q3=8,解得q=2.
则数列{an}的前5项和=$\frac{{2}^{5}-1}{2-1}$=31.
故选:D.

点评 本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=$\sqrt{5}$,|$\overrightarrow{c}$|=1,若($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=0,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的取值范围是(  )
A.[1,2]B.[2,4]C.[$\sqrt{7}$-1,$\sqrt{7}$+1]D.[$\sqrt{5}$-1,$\sqrt{5}$+1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某公司的组织结构图如图所示,其中技术服务部的直接领导是(  )
A.董事长B.监事会C.总经理D.总工程师

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{\begin{array}{l}({4a-3})x+2a-4,x≤t\\ 2{x^3}-6x,x>t\end{array}\right.$,无论t取何值,函数f(x)在R上总是不单调,则实数a的取值范围是(  )
A.(-∞,1)B.$[{\frac{1}{4},+∞})$C.$[{\frac{3}{4},+∞})$D.$({-∞,\frac{3}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱柱ABC-A1B1C1中,$AB=BC=\sqrt{5},AC=2$且点A1在底面ABC上的射影O恰是线段AC的中点,$A{A_1}=\sqrt{5}$.
(1)判断A1B与B1C是否垂直,并证明你的结论;
(2)求点A1到平面BCC1B1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图 已知四边形 ABCD 为直角梯形,AB⊥AD,DC∥AB,且边 AB、AD、DC 的长分别为 7cm,4cm,4cm,分别以 AB、AD、DC 三边所在直线为旋转轴,求所得几何体体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下面给出四种说法:
①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;
②命题P:“?x0∈R,x02-x0-1>0”的否定是¬P:“?x∈R,x2-x-1≤0”;
③设随机变量X服从正态分布N(0,1),若P(x>1)=p,则P(-1<X<0)=$\frac{1}{2}$-p
④回归直线一定过样本点的中心($\overline{x}$,$\overline{y}$).
其中正确的说法有②③④(请将你认为正确的说法的序号全部填写在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱锥A-BCD中,已知△ABD,△BCD都是边长为2的等边三角形,E为BD中点,且AE⊥平面BCD,F为线段AB上一动点,记$\frac{BF}{BA}=λ$.
(1)当$λ=\frac{1}{3}$时,求异面直线DF与BC所成角的余弦值;
(2)当CF与平面ACD所成角的正弦值为$\frac{{\sqrt{15}}}{10}$时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知e是自然对数的底数,函数f(x)=(ax2+x)ex,若f(x)在[-1,1]上是单调增函数,则a的取值范围是(  )
A.[-$\frac{2}{3}$,0]B.(-∞,0)∪[$\frac{2}{3}$,+∞)C.[0,$\frac{2}{3}$]D.(-∞,-$\frac{2}{3}$]∪[0,+∞)

查看答案和解析>>

同步练习册答案