精英家教网 > 高中数学 > 题目详情
16.某中学高中学生有900名.为了考察他们的体重状况,打算抽取容量为45的一个样本.已知高一有400名学生,高二有300名学生,高三有200名学生.若采取分层抽样的办法抽取,则高二学生需要抽取的学生个数为(  )
A.20人B.15人C.10人D.5人

分析 根据分层抽样的定义建立比例公式即可得到结论.

解答 解:由分层抽样的定义可得高二学生需要抽取的学生个数为$\frac{300}{900}×45$=15人,
故选:B.

点评 本题主要考查分层抽样的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知复数z满足(3+4i)z=25,则z对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=ln(1+x)-x+\frac{k}{2}{x^2}(k≥0)$.
(Ⅰ)当k=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当k≠1时,求函数f(x)的单调区间;
(Ⅲ)当k=0时,若x>-1,证明:$ln(x+1)≥1-\frac{1}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某人对一个地区人均工资x与该地区人均消费y进行统计调查,y与x有相关关系,得到线性回归方程为y=0.66x+1.562(单位:百元).若该地区人均消费水平为7.675百元,估计该地区人均消费额占人均工资收入的百分比约为(  )
A.66%B.72.3%C.67.3%D.83%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=2x3-6x2+m(m为常数)在[1,3]上有最小值为2,那么此函数在[1,3]的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列各函数的导数
(1)$y=4x+\frac{1}{x}$
(2)y=exsinx
(3)$y=\frac{lnx}{x}$
(4)y=cos(2x+5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正方形ABCD的边长为2,向正方形ABCD内投掷200个点,有30个落入图形M中,则图形M的面积估计为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}中,a10=30,a20=50.
(1)求数列{an}通项;
(2)若记${b_n}=\frac{4}{{({a_n}-10)({a_n}-8)}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某同学用“随机模拟方法”计算曲线y=lnx与直线x=c,y=0所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1,e]上的均匀随机数xi和10个区间[0,1]上的均匀随机数yi(i∈N*,1≤i≤10),其数据如下表的前两行.
x2.50  1.01 1.90 1.222.52 2.17 1.89 1.96 1.36 2.22 
y0.84 0.25 0.98 0.15 0.01 0.60 0.59 0.88 0.84 0.10 
lnx 0.90 0.010.64 0.20 0.92 0.77 0.64 0.67 0.31 0.80 
由此可得这个曲边三角形面积的一个近似值是(  )
A.$\frac{3}{5}$(e-1)B.$\frac{2}{5}$(e-1)C.$\frac{3}{5}$(e+1)D.$\frac{2}{5}$(e+1)

查看答案和解析>>

同步练习册答案