ÔÚÏÂÁÐÃüÌâÖУº
¢ÙÈôf£¨x£©ÊǶ¨ÒåÔÚ[-1£¬1]ÉϵÄżº¯Êý£¬ÇÒÔÚ[-1£¬0]ÉÏÊÇÔöº¯Êý£¬¦È¡Ê£¨
¦Ð
4
£¬
¦Ð
2
£©£¬Ôòf£¨sin¦È£©£¾f£¨cos¦È£©£»
¢ÚÈôÈñ½Ç¦Á¡¢¦ÂÂú×ãcos¦Á£¾sin¦Â£¬Ôò¦Á+¦Â£¼
¦Ð
2
£»
¢ÛÈôf£¨x£©=2cos2
x
2
-1£¬Ôòf£¨x+¦Ð£©=f£¨x£©¶Ôx¡ÊRºã³ÉÁ¢£»
¢Ü¶ÔÓÚÈÎÒâʵÊýa£¬ÒªÊ¹º¯Êýy=5cos£¨
2k+1
3
¦Ðx-
¦Ð
6
£©£¨k¡ÊN*£©ÔÚÇø¼ä[a£¬a+3]ÉϵÄÖµ
5
4
³öÏֵĴÎÊý²»Ð¡ÓÚ4´Î£¬ÓÖ²»¶àÓÚ8´Î£¬Ôòk¿ÉÒÔÈ¡2ºÍ3£®       
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ______£®
¢ÙÓÉżº¯Êý¶Ô³ÆÇø¼äÉϵĵ¥µ÷ÐÔÏà·´¿ÉÖª£¬º¯ÊýÔÚ[0£¬1]Éϵ¥µ÷µÝ¼õ£¬Ó֦ȡʣ¨
¦Ð
4
£¬
¦Ð
2
£©Ê±£¬1£¾sin¦È£¾cos¦È£¾0£¬Ôòf£¨sin¦È£©¡Ïf£¨cos¦È£©£»¹Ê¢Ù´íÎó
¢ÚÈôÈñ½Ç¦Á¡¢¦ÂÂú×ãcos¦Á£¾sin¦Â=cos£¨
¦Ð
2
-¦Â
£©£¬Ôò¦Á£¼
¦Ð
2
-¦Â
£¬Ôò¦Á+¦Â£¼
¦Ð
2
£»¢ÚÕýÈ·
¢Ûf£¨x£©=2cos2
x
2
-1=cosx£¬º¯ÊýµÄÖÜÆÚΪT=2¦Ð£¬Ôòf£¨x+¦Ð£©=f£¨x£©¶Ôx¡ÊRºã³ÉÁ¢£»¢Û´íÎó
¢ÜÓÉÓÚº¯Êýy=5cos£¨
2k+1
3
¦Ðx-
¦Ð
6
£©ÔÚÒ»¸öÖÜÆÚÄÚº¯ÊýÖµ
5
4
³öÏÖÁ½´Î£¬ÈôÂúÔÚÇø¼ä[a£¬a+3]ÉϵÄÖµ
5
4
³öÏֵĴÎÊý²»Ð¡ÓÚ4´Î£¬ÓÖ²»¶àÓÚ8´Î£¬Ôò
3T
2
¡Ü3
7T
2
¡Ý3

µ±k=2ʱ£¬ÖÜÆÚT=
6
5
£¬Ôòº¯Êýy=5cos£¨
2k+1
3
¦Ðx-
¦Ð
6
£©ÔÚÇø¼ä[a£¬a+3]ÄÚº¯ÊýÖµ
5
4
³öÏÖ6´Î£¬Âú×ãÌâÒâ     
µ±k=3ʱ£¬ÖÜÆÚT=
6
7
£¬Ôòº¯Êýy=5cos£¨
2k+1
3
¦Ðx-
¦Ð
6
£©ÔÚÇø¼ä[a£¬a+3]ÄÚº¯ÊýÖµ
5
4
³öÏÖ×î´ó³öÏÖ8´Î£¬Âú×ãÌâÒ⣻¹Ê¢ÜÕýÈ·
¹Ê´ð°¸Îª£º¢Ú¢Ü
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐÃüÌâÖУº¢Ùº¯Êý£¬f£¨x£©=sinx+
2
sinx
£¨x¡Ê£¨0£¬¦Ð£©£©µÄ×îСֵÊÇ2
2
£»¢ÚÔÚ¡÷ABCÖУ¬Èôsin2A=sin2B£¬Ôò¡÷ABCÊǵÈÑü»òÖ±½ÇÈý½ÇÐΣ»¢ÛÈç¹ûÕýʵÊýa£¬b£¬cÂú×ãa + b£¾cÔò
a
1+a
+
b
1+b
£¾
c
1+c
£»¢ÜÈç¹ûy=f£¨x£©Êǿɵ¼º¯Êý£¬Ôòf¡ä£¨x0£©=0ÊǺ¯Êýy=f£¨x£©ÔÚx=x0´¦È¡µ½¼«ÖµµÄ±ØÒª²»³ä·ÖÌõ¼þ£®ÆäÖÐÕýÈ·µÄÃüÌâÊÇ£¨¡¡¡¡£©
A¡¢¢Ù¢Ú¢Û¢ÜB¡¢¢Ù¢Ü
C¡¢¢Ú¢Û¢ÜD¡¢¢Ú¢Û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÏÂÁÐÃüÌâÖУº¢ÙÒÑÖªÁ½Ìõ²»Í¬Ö±Ïßm¡¢nÁ½Éϲ»Í¬Æ½Ãæ¦Á£¬¦Â£¬m¡Í¦Á£¬n¡Í¦Â£¬m¡Ín£¬Ôò¦Á¡Í¦Â£»¢Úº¯Êýy=sin£¨2x-
¦Ð
6
£©Í¼ÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄΪµã£¨
¦Ð
3
£¬0£©£»¢ÛÈôº¯Êýf£¨x£©ÔÚRÉÏÂú×ãf£¨x+1£©=
1
f(x)
£¬Ôòf£¨x£©ÊÇÖÜÆÚΪ2µÄº¯Êý£»¢ÜÔÚ¡÷ABCÖУ¬Èô
OA
+
OB
=2
CO
£¬ÔòS¡÷ABC=S¡÷BOCÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÏÂÁÐÃüÌâÖУº
¢ÙÈôf£¨x£©ÊǶ¨ÒåÔÚ[-1£¬1]ÉϵÄżº¯Êý£¬ÇÒÔÚ[-1£¬0]ÉÏÊÇÔöº¯Êý£¬¦È¡Ê£¨
¦Ð
4
£¬
¦Ð
2
£©£¬Ôòf£¨sin¦È£©£¾f£¨cos¦È£©£»
¢ÚÈôÈñ½Ç¦Á¡¢¦ÂÂú×ãcos¦Á£¾sin¦Â£¬Ôò¦Á+¦Â£¼
¦Ð
2
£»
¢ÛÈôf£¨x£©=2cos2
x
2
-1£¬Ôòf£¨x+¦Ð£©=f£¨x£©¶Ôx¡ÊRºã³ÉÁ¢£»
¢Ü¶ÔÓÚÈÎÒâʵÊýa£¬ÒªÊ¹º¯Êýy=5cos£¨
2k+1
3
¦Ðx-
¦Ð
6
£©£¨k¡ÊN*£©ÔÚÇø¼ä[a£¬a+3]ÉϵÄÖµ
5
4
³öÏֵĴÎÊý²»Ð¡ÓÚ4´Î£¬ÓÖ²»¶àÓÚ8´Î£¬Ôòk¿ÉÒÔÈ¡2ºÍ3£®       
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
¢Ú¢Ü
¢Ú¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÏÂÁÐÃüÌâÖУ¬ËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
¢Ú¢Û
¢Ú¢Û
£®
¢ÙÃüÌâ¡°?x¡ÊR£¬x2-x£¾0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2-x£¼0¡±£»
¢ÚÈôpÊÇqµÄ³ä·Ö²»±ØÒªÌõ¼þ£¬Ôò?pÊÇ?qµÄ±ØÒª²»³ä·ÖÌõ¼þ£»
¢Ûº¯Êýf£¨x£©=lg£¨x2+x+a£©µÄÖµÓòΪRµÄ³äÒªÌõ¼þÊÇa¡Ü
1
4
£»
¢ÜÈôº¯Êýf(x)=
2x-a
x-1
ÔÚ£¨1£¬+¡Þ£©ÄÚΪÔöº¯Êý£¬Ôòa£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÏÂÁÐÃüÌâÖУ¬ÕýÈ·µÄÓÐ
1
1
¸ö£®
£¨1£©º¯Êýy=tanxÔÚ¶¨ÒåÓòÄÚÊÇÔöº¯Êý£»
£¨2£©´æÔÚ¦Á¡ÊR£¬Ê¹º¯Êýf£¨x£©=cos£¨x+¦Á£©ÊÇÆ溯Êý£»
£¨3£©y=tanxµÄͼÏó¼ÈÊÇÖÐÐĶԳÆͼÐΣ¬ÓÖÊÇÖá¶Ô³ÆͼÐΣ»
£¨4£©Èô
a
¡Î
b
ÇÒ
b
¡Î
c
£¬Ôò±ØÓÐ
a
¡Î
c
£»
£¨5£©º¯Êýf(x)=|sin(x+
¦Ð
3
)|
ÔÚ(
¦Ð
3
£¬
5¦Ð
6
)
ÉÏÊǼõº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸