精英家教网 > 高中数学 > 题目详情
14.等差数列{an}满足an-1+an+an+1=3n(n≥2),函数f(x)=2x,则log2[f(a1)•f(a2)…f(an)]的值为(  )
A.$\frac{n(n-1)}{2}$B.$\frac{n(n+1)}{2}$C.$\frac{n(n-1)}{4}$D.$\frac{n(n+1)}{4}$

分析 等差数列{an}满足an-1+an+an+1=3n(n≥2),可得an=n,f(an)=2n.再利用指数函数与对数函数的运算性质、等差数列的求和公式即可得出.

解答 解:∵等差数列{an}满足an-1+an+an+1=3n(n≥2),∴3an=3n,即an=n.
∵函数f(x)=2x,∴f(an)=2n
则log2[f(a1)•f(a2)…f(an)]=$lo{g}_{2}(2×{2}^{2}×…×{2}^{n})$=$lo{g}_{2}{2}^{1+2+…+n}$=1+2+…+n=$\frac{n(n+1)}{2}$.
故选:B.

点评 本题考查了指数函数与对数函数的运算性质、等差数列的定义通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若样本数据x1,x2,…,x10的方差为8,则数据2x1-1,2x2-1,…,2x10-1的方差为(  )
A.31B.15C.32D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知正项等比数列{an}满足a5+a4+a3-a2=5,则a6+a7的最小值为(  )
A.32B.10+10$\sqrt{2}$C.20D.28

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么y=x2,值域为{1,9}的“同族函数”共有9个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上时增函数,则(  )
A.f(-1)<f(3)<f(4)B.f(4)<f(3)<f(-1)C.C.f(3)<f(4)<f(-1)D.f(-1)<f(4)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=$\left\{{\begin{array}{l}{\sqrt{2-{{(\frac{1}{2})}^x}}(x<0)}\\{lg(x+1)(x≥0)}\end{array}}$,若f(x0)<1,则x0的取值范围是(  )
A.(-1,9)B.[-1,9)C.[0,9)D.(0,9)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{ax+b}{1+{x}^{2}}$的定义域为(-1,1),满足f(-x)=-f(x),且f($\frac{1}{2}$)=$\frac{2}{5}$.
(1)求函数f(x)的解析式;
(2)证明f(x)在(-1,1)上是增函数;
(3)解不等式f(2x-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图的程序框图表示的算法的功能是(  )
A.计算小于100的奇数的连乘积
B.计算从1开始的连续奇数的连乘积
C.从1开始的连续奇数的连乘积,当乘积大于100时,计算奇数的个数
D.计算1×3×5×…×n≥100时的最小的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.y=log${\;}_{\frac{1}{2}}$(-x2-2x+3)的单调递增区间[-1,1).

查看答案和解析>>

同步练习册答案