精英家教网 > 高中数学 > 题目详情
5.已知正项等比数列{an}满足a5+a4+a3-a2=5,则a6+a7的最小值为(  )
A.32B.10+10$\sqrt{2}$C.20D.28

分析 可判数列{an+an+1}也是各项均为正的等比数列,设数列{an+an+1}的公比为x,a2+a3=a,则x∈(1,+∞),a4+a5=ax,结合已知可得a=$\frac{5}{x-1}$,代入可得y=a6+a7的表达式,x∈(1,+∞),由导数求函数的最值即可.

解答 解:∵数列{an}是各项均为正的等比数列,
∴数列{an+an+1}也是各项均为正的等比数列,
设数列{an+an+1}的公比为x,a2+a3=a,
则x∈(1,+∞),a5+a4=ax,
∴有a5+a4-a3-a2=ax-a=5,即a=$\frac{5}{x-1}$,
∴y=a6+a7=ax2=$\frac{5{x}^{2}}{x-1}$,x∈(1,+∞),
求导数可得y′=$\frac{5x(x-2)^{2}}{(x-1)^{2}}$,令y′>0可得x>2,
故函数在(1,2)单调递减,(2,+∞)单调递增,
∴当x=2时,y=a6+a7取最小值:20.
故选:C.

点评 本题考查等比数列的性质,涉及导数的应用,考查分析问题解决问题的能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知$a={2.5^{-\frac{3}{2}}}$,$b={log_{\frac{2}{3}}}2.5$,c=2.5-2,则a、b、c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD..a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列{an}的通项公式为an=2n-1,则使不等式${a_1}^2+{a_2}^2+…+{a_n}^2<5×{2^{n+1}}$成立的n的最大值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,直三棱柱ABC-A1B1C1的各条棱长均为a,D是侧棱CC1的中点.
(1)求证:平面AB1D⊥平面ABB1A1
(2)求平面AB1D与平面ABC所成二面角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=a2015x2015+a2013x2013+a2011x2011+…+a3x3+a1x+1,且f(1)=2,则f(-1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列各组函数相等的是④.
①$f(x)=\frac{{{x^2}-1}}{x-1}$与g(x)=x+1  ②$f(x)=\sqrt{-2{x^3}}$与$g(x)=x\sqrt{-2x}$
③f(x)=(x-2)0与g(x)=1   ④$f(t)=\frac{|t|}{t}$与$g(x)=\frac{{\sqrt{x^2}}}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知复数z=(t-1)+(t2-2t-3)i(t∈R)对应的点在第四象限,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}满足an-1+an+an+1=3n(n≥2),函数f(x)=2x,则log2[f(a1)•f(a2)…f(an)]的值为(  )
A.$\frac{n(n-1)}{2}$B.$\frac{n(n+1)}{2}$C.$\frac{n(n-1)}{4}$D.$\frac{n(n+1)}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2+2x.
(Ⅰ)求f(0)的值;
(Ⅱ)求此函数在R上的解析式;
(Ⅲ)若对任意的t∈R,不等式f(t+1)+f(m-2t2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案