精英家教网 > 高中数学 > 题目详情
8.数列{an}的通项公式为an=2n-1,则使不等式${a_1}^2+{a_2}^2+…+{a_n}^2<5×{2^{n+1}}$成立的n的最大值为(  )
A.2B.3C.4D.5

分析 根据已知条件an=2n-1推知an2=4n-1,所以a12+a22+…+an2=$\frac{1×(1-{4}^{n})}{1-4}$=$\frac{1}{3}$(4n-1),由此得到2n(2n-30)<1,从而解得n的最大值为4.

解答 解:∵an=2n-1
∴an2=4n-1
∴a12+a22+…+an2=$\frac{1×(1-{4}^{n})}{1-4}$=$\frac{1}{3}$(4n-1),
∵a12+a22+…+an2<5×2n+1
∴$\frac{1}{3}$(4n-1)<5×2n+1,
∴2n(2n-30)<1,
解得n的最大值为4.
故选:C.

点评 本题考查等比数列的通项公式,实数的最大值的求法,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设集合M={x|x2-3x+2>0},集合N={x|x≤-2},则M∩N=(  )
A.{x|x>-2}B.{x|x≤-2}C.{x|x>-1}D.{x|x≥-2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其它8个长方形的面积和的$\frac{2}{5}$,且样本容量为140,则中间一组的频数为40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若样本数据x1,x2,…,x10的方差为8,则数据2x1-1,2x2-1,…,2x10-1的方差为(  )
A.31B.15C.32D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过定点A的直线x-my=0(m∈R)与过定点B的直线mx+y-m+3=0(m∈R)交于点P(x,y),则|PA|2+|PB|2的值为(  )
A.$\sqrt{10}$B.10C.2$\sqrt{5}$D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题正确的是(  )
A.很小的实数可以构成集合
B.自然数集N中最小的数是1
C.集合{y|y=x2-1}与{(x,y)|y=x2-1}是同一个集合
D.空集是任何集合的子集

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:
(1)(2$\frac{7}{9}$)0.5+0.1-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$-3π0+$\frac{37}{48}$;   
(2)$\frac{lg2+lg5-lg8}{lg50-lg40}$+log${\;}_{\sqrt{2}}$$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知正项等比数列{an}满足a5+a4+a3-a2=5,则a6+a7的最小值为(  )
A.32B.10+10$\sqrt{2}$C.20D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{ax+b}{1+{x}^{2}}$的定义域为(-1,1),满足f(-x)=-f(x),且f($\frac{1}{2}$)=$\frac{2}{5}$.
(1)求函数f(x)的解析式;
(2)证明f(x)在(-1,1)上是增函数;
(3)解不等式f(2x-1)+f(x)<0.

查看答案和解析>>

同步练习册答案