精英家教网 > 高中数学 > 题目详情
3.过定点A的直线x-my=0(m∈R)与过定点B的直线mx+y-m+3=0(m∈R)交于点P(x,y),则|PA|2+|PB|2的值为(  )
A.$\sqrt{10}$B.10C.2$\sqrt{5}$D.20

分析 动直线x-my=0过定点A(0,0),动直线mx+y-m+3=0化为m(x-1)+y+3=0,令$\left\{\begin{array}{l}{x-1=0}\\{y+3=0}\end{array}\right.$,解得x=1,y=-3.过定点B(1,-3).由于此两条直线互相垂直,可得|PA|2+|PB|2=|AB|2=10.

解答 解:动直线x-my=0过定点A(0,0),
动直线mx+y-m+3=0化为m(x-1)+y+3=0,令$\left\{\begin{array}{l}{x-1=0}\\{y+3=0}\end{array}\right.$,解得x=1,y=-3.过定点B(1,-3).
∵此两条直线互相垂直,
∴|PA|2+|PB|2=|AB|2=10,
故选B.

点评 本题考查了直线系、相互垂直的直线的斜率的关系、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.定义在R上的奇函数f(x)对任意x∈R都有f(x)=f(x+4),当x∈(-2,0)时,f(x)=2x,则f(2016)-f(2015)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若f(x)=x2+bx+c,且f(1)=0,f(3)=0,
(1)求f(-1)的值;
(2)求f(x)在x∈[2,4]上的最大值与最小值;
(3)判断f(x)在[2,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系中,圆C1:x2+y2=1经过伸缩变换$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$后得到曲线C2以坐标原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l的极坐标方程为cosθ+2sinθ=$\frac{10}{ρ}$
(1)求曲线C2的直角坐标方程及直线l的直角坐标方程;
(2)在C2上求一点M,使点M到直线l的距离最小,并求出最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设命题 p:$?{x_0}∈R,{x_0}^2>1$,则?p为?x∈R,x2≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列{an}的通项公式为an=2n-1,则使不等式${a_1}^2+{a_2}^2+…+{a_n}^2<5×{2^{n+1}}$成立的n的最大值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数是偶函数的是(  )
A.f(x)=x+$\frac{1}{x}$B.f(x)=$\frac{1}{{x}^{2}}$C.f(x)=x3-2xD.f(x)=x2,x∈[-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=a2015x2015+a2013x2013+a2011x2011+…+a3x3+a1x+1,且f(1)=2,则f(-1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,若sinAcosA=sinBcosB,则△ABC形状为等腰或直角三角形.

查看答案和解析>>

同步练习册答案