精英家教网 > 高中数学 > 题目详情
(2013•通州区一模)已知圆的直角坐标方程为x2+y2-2y=0.在以原点为极点,x轴正半轴为极轴的极坐标系中,该圆的方程为(  )
分析:法一:利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆的极坐标方程
法二:设M(ρ,θ)是圆C上任一点,∠MOx=θ,利用直角三角形而出ρ,θ关系式即可.
解答:解:法一:利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换,
圆的直角坐标方程为x2+y2-2y=0,所以ρ2-2ρsinθ=0,即ρ=2sinθ.
法二:圆的直角坐标方程为x2+y2-2y=0,即x2+(y-1)2=1,
设M(ρ,θ)是圆C上任一点,∠MOx=θ,若θ为钝角,则sin(π-θ)=sinθ
所以2sinθ=ρ.
故选B.
点评:本题考查圆的极坐标方程求解,分别用到了定义法和转化代换法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•通州区一模)在△ABC中,角A,B,C的对边分别为a,b,c,则“a=2bcosC”是“△ABC是等腰三角形”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)对任意两个实数x1,x2,定义max(x1x2)=
x1x1x2
x2x1x2
若f(x)=x2-2,g(x)=-x,则max(f(x),g(x))的最小值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)奇函数f(x)的定义域为[-2,2],若f(x)在[0,2]上单调递减,且f(1+m)+f(m)<0,则实数m的取值范围是
(-
1
2
,1]
(-
1
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)已知圆的方程为x2+y2-2x=0,则圆心坐标为(  )

查看答案和解析>>

同步练习册答案