精英家教网 > 高中数学 > 题目详情
(2013•通州区一模)在△ABC中,角A,B,C的对边分别为a,b,c,则“a=2bcosC”是“△ABC是等腰三角形”的(  )
分析:先根据题设条件求得cosC的表达式,进而利用余弦定理求得cosC的另一表达式,二者相等化简整理求得b=c,进而判断出三角形为等腰三角形.
解答:解:∵当a=2bcosC时,
∴cosC=
a
2b

∵cosC=
a2+b2-c2
2ab

a
2b
=
a2+b2-c2
2ab
,化简整理得b=c
∴△ABC为等腰三角形.
反之,“△ABC是等腰三角形,不一定有b=c,
从而a=2bcosC不一定成立.
则“a=2bcosC”是“△ABC是等腰三角形”的充分不必要条件.
故选A.
点评:本题主要考查了解三角形的应用和三角形形状的判断.解题的关键是利用了cosC这一桥梁完成了问题的转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•通州区一模)对任意两个实数x1,x2,定义max(x1x2)=
x1x1x2
x2x1x2
若f(x)=x2-2,g(x)=-x,则max(f(x),g(x))的最小值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)已知圆的直角坐标方程为x2+y2-2y=0.在以原点为极点,x轴正半轴为极轴的极坐标系中,该圆的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)奇函数f(x)的定义域为[-2,2],若f(x)在[0,2]上单调递减,且f(1+m)+f(m)<0,则实数m的取值范围是
(-
1
2
,1]
(-
1
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)已知圆的方程为x2+y2-2x=0,则圆心坐标为(  )

查看答案和解析>>

同步练习册答案