【题目】已知函数
(
)的图象上的动点
到原点
的距离的平方的最小值为
.
(1)求
的值;
(2)设
,若函数
有两个极值点
、
,且
,证明:
.(参考公式:
)
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,以x轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程与曲线
的直角坐标方程;
(2)设
、
为曲线
上位于第一,二象限的两个动点,且
,射线
,
交曲线
分别于点
,
.求
面积的最小值,并求此时四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂制作如图所示的一种标识,在半径为R的圆内做一个关于圆心对称的“H型”图形,“H”型图形由两竖一横三个等宽的矩形组成,两个竖直的矩形全等且它们的长边是横向矩形长边的
倍,设O为圆心,
,“H”型图形的面积为S.
![]()
(1)将AB、AD用R、
表示,并将S表示成
的函数;
(2)为了突出“H”型图形,设计时应使S尽可能大,则当
为何值时,S最大?并求出S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
(
为参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程
,点
在直线
上,直线
与曲线
交于
两点.
(1)求曲线
的普通方程及直线
的参数方程;
(2)求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿波罗尼斯(约公元前
年)证明过这样一个命题:平面内到两定点距离之比为常数
的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点
、
间的距离为
,动点
满足
,则
的最小值为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com