【题目】如图,直三棱柱
的底面为等边三角形,
、
分别为
、
的中点,点
在棱
上,且
.
![]()
(1)证明:平面
平面
;
(2)若
,
,求二面角
的余弦值.
【答案】(1)证明见解析;(2)
.
【解析】
(1)推导出
平面
,可得出
,结合
,利用线面垂直的判定定理可得出
平面
,再由面面垂直的判定定理可证得结论成立;
(2)由
平面
得出
,利用勾股定理计算出
的长,然后以点
为坐标原点,
、
、
所在直线分别为
轴、
轴、
轴,建立空间直角坐标系
,利用空间向量法可求出二面角
的余弦值.
(1)因为三棱柱
为直三棱柱,所以
平面
,
平面
,
,
因为
为等边三角形,
为
的中点,所以
.
又
,所以
平面
,
平面
,所以
.
又因为
,
,所以
平面
.
又因为
平面
,所以平面
平面
;
(2)由(1)可知
平面
,所以
.
设
,则有
,即
,得
.
以
为坐标原点,
、
、
所在直线分别为
轴、
轴、
轴,建立空间直角坐标系
,
![]()
则
,
,
,
,
,
设平面
的法向量为
,
,
,
由
,令
,可得
,
,则
,
因为
平面
,所以平面
的一个法向量为
,
,
由图形可知,二面角
的平面角为锐角,所以二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照
分成9组,制成了如图所示的频率分布直方图.
(1)求直方图的
的值;
(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.
(3)估计居民月用水量的中位数.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为正整数,各项均为正整数的数列
满足:
,记数列
的前
项和为
.
(1)若
,求
的值;
(2)若
,求
的值;
(3)若
为奇数,求证:“
”的充要条件是“
为奇数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为提升中学生的数学素养,激发学生学习数学的兴趣,举办了一次“数学文化知识大赛”,分预赛和复赛两个环节.已知共有8000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到如下频率分布直方图.
![]()
(1)规定预赛成绩不低于80分为优良,若从上述样本中预赛成绩不低于60分的学生中随机地抽取2人,求恰有1人预赛成绩优良的概率;
(2)由频率分布直方图可认为该市全体参加预赛学生的预赛成绩Z服从正态分布N(μ,σ2),其中μ可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组区间的中点值代替),且σ2=362.利用该正态分布,估计全市参加预赛的全体学生中预赛成绩不低于91分的人数;
(3)预赛成绩不低于91分的学生将参加复赛,复赛规则如下:①每人的复赛初始分均为100分;②参赛学生可在开始答题前自行决定答题数量n,每一题都需要“花”掉(即减去)一定分数来获取答题资格,规定答第k题时“花”掉的分数为0.1k(k∈(1,2n));③每答对一题加1.5分,答错既不加分也不减分;④答完n题后参赛学生的最终分数即为复赛成绩.已知学生甲答对每道题的概率均为0.7,且每题答对与否都相互独立.若学生甲期望获得最佳的复赛成绩,则他的答题数量n应为多少?
(参考数据:
;若Z~N(μ,σ2),则P(μ﹣σ<Z<μ+σ)≈0.6827,P(μ﹣2σ<Z<μ+2σ)≈0.9545,P(μ﹣3σ<Z<μ+3σ)≈0.9973.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的定义域为D,若存在实常数
及
,对任意
,当
且
时,都有
成立,则称函数
具有性质
.
(1)判断函数
是否具有性质
,并说明理由;
(2)若函数
具有性质
,求
及
应满足的条件;
(3)已知函数
不存在零点,当
时具有性质
(其中
,
),记
,求证:数列
为等比数列的充要条件是
或
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com